Spaces:
Paused
Paused
File size: 11,088 Bytes
ee78b3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
"""
Standalone RAG Chatbot with Gemini API
A simple PDF chatbot using Retrieval-Augmented Generation with Google's Gemini API
"""
import gradio as gr
import os
import numpy as np
import pymupdf # PyMuPDF for PDF processing
# RAG dependencies
try:
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import google.generativeai as genai
RAG_AVAILABLE = True
except ImportError as e:
print(f"Missing dependencies: {e}")
RAG_AVAILABLE = False
# Global variables
embedding_model = None
gemini_model = None
document_chunks = []
document_embeddings = None
processed_text = ""
def initialize_models():
"""Initialize embedding model and Gemini API"""
global embedding_model, gemini_model
if not RAG_AVAILABLE:
return False, "Required dependencies not installed"
try:
# Initialize embedding model (CPU to save resources)
if embedding_model is None:
print("Loading embedding model...")
embedding_model = SentenceTransformer('all-MiniLM-L6-v2', device='cpu')
print("β
Embedding model loaded successfully")
# Configure Gemini API
if gemini_model is None:
api_key = os.getenv('GEMINI_API_KEY')
if not api_key:
return False, "GEMINI_API_KEY not found in environment variables"
print("Configuring Gemini API...")
genai.configure(api_key=api_key)
gemini_model = genai.GenerativeModel('gemma-3n-e4b-it')
print("β
Gemini model initialized successfully")
return True, "All models ready"
except Exception as e:
print(f"Error initializing: {e}")
import traceback
traceback.print_exc()
return False, f"Error: {str(e)}"
def extract_text_from_pdf(pdf_file):
"""Extract text from uploaded PDF file"""
try:
if isinstance(pdf_file, str):
# File path
pdf_document = pymupdf.open(pdf_file)
else:
# File object
pdf_bytes = pdf_file.read()
pdf_document = pymupdf.open(stream=pdf_bytes, filetype="pdf")
text_content = ""
for page_num in range(len(pdf_document)):
page = pdf_document[page_num]
text_content += f"\n--- Page {page_num + 1} ---\n"
text_content += page.get_text()
pdf_document.close()
return text_content
except Exception as e:
raise Exception(f"Error extracting text from PDF: {str(e)}")
def chunk_text(text, chunk_size=500, overlap=50):
"""Split text into overlapping chunks"""
words = text.split()
chunks = []
for i in range(0, len(words), chunk_size - overlap):
chunk = ' '.join(words[i:i + chunk_size])
if chunk.strip():
chunks.append(chunk)
return chunks
def create_embeddings(chunks):
"""Create embeddings for text chunks"""
if embedding_model is None:
return None
try:
print(f"Creating embeddings for {len(chunks)} chunks...")
embeddings = embedding_model.encode(chunks, show_progress_bar=True)
return np.array(embeddings)
except Exception as e:
print(f"Error creating embeddings: {e}")
return None
def retrieve_relevant_chunks(question, chunks, embeddings, top_k=3):
"""Retrieve most relevant chunks for a question"""
if embedding_model is None or embeddings is None:
return chunks[:top_k]
try:
question_embedding = embedding_model.encode([question])
similarities = cosine_similarity(question_embedding, embeddings)[0]
# Get top-k most similar chunks
top_indices = np.argsort(similarities)[-top_k:][::-1]
relevant_chunks = [chunks[i] for i in top_indices]
return relevant_chunks
except Exception as e:
print(f"Error retrieving chunks: {e}")
return chunks[:top_k]
def process_pdf(pdf_file, progress=gr.Progress()):
"""Process uploaded PDF and prepare for Q&A"""
global document_chunks, document_embeddings, processed_text
if pdf_file is None:
return "β Please upload a PDF file first"
try:
# Extract text from PDF
progress(0.2, desc="Extracting text from PDF...")
text = extract_text_from_pdf(pdf_file)
if not text.strip():
return "β No text found in PDF"
processed_text = text
# Create chunks
progress(0.4, desc="Creating text chunks...")
document_chunks = chunk_text(text)
# Create embeddings
progress(0.6, desc="Creating embeddings...")
document_embeddings = create_embeddings(document_chunks)
if document_embeddings is None:
return "β Failed to create embeddings"
progress(1.0, desc="PDF processed successfully!")
return f"β
PDF processed successfully! Created {len(document_chunks)} chunks. You can now ask questions about the document."
except Exception as e:
return f"β Error processing PDF: {str(e)}"
def chat_with_pdf(message, history):
"""Generate response using RAG with Gemini API"""
global gemini_model
if not message.strip():
return history
if not processed_text:
return history + [[message, "β Please upload and process a PDF first"]]
# Check if model is initialized
if gemini_model is None:
print("Model not initialized, attempting to initialize...")
success, error_msg = initialize_models()
if not success:
return history + [[message, f"β Failed to initialize: {error_msg}"]]
try:
# Retrieve relevant chunks
if document_chunks and document_embeddings is not None:
relevant_chunks = retrieve_relevant_chunks(message, document_chunks, document_embeddings)
context = "\n\n".join(relevant_chunks)
else:
# Fallback to truncated text
context = processed_text[:2000] + "..." if len(processed_text) > 2000 else processed_text
# Create prompt for Gemini
prompt = f"""You are a helpful assistant that answers questions about documents. Use the provided context to answer questions accurately and concisely.
Context:
{context}
Question: {message}
Please provide a clear and helpful answer based on the context provided."""
# Generate response using Gemini API
response = gemini_model.generate_content(prompt)
response_text = response.text if hasattr(response, 'text') else str(response)
return history + [[message, response_text]]
except Exception as e:
error_msg = f"β Error generating response: {str(e)}"
print(f"Full error: {e}")
import traceback
traceback.print_exc()
return history + [[message, error_msg]]
def clear_chat():
"""Clear chat history and processed data"""
global document_chunks, document_embeddings, processed_text
document_chunks = []
document_embeddings = None
processed_text = ""
return [], "Ready to process a new PDF"
def get_model_status():
"""Get current model loading status"""
global gemini_model, embedding_model
statuses = []
if embedding_model is not None:
statuses.append("β
Embedding model loaded")
else:
statuses.append("β Embedding model not loaded")
if gemini_model is not None:
statuses.append("β
Gemini model ready")
else:
statuses.append("β Gemini model not initialized")
return " | ".join(statuses)
# Initialize models on startup
model_status = "β³ Initializing models..."
if RAG_AVAILABLE:
success, message = initialize_models()
model_status = "β
Models ready" if success else f"β {message}"
else:
model_status = "β Dependencies not installed"
# Create Gradio interface
with gr.Blocks(
title="RAG Chatbot with Gemini API",
theme=gr.themes.Soft(),
css="""
.main-container { max-width: 1200px; margin: 0 auto; }
.status-box { padding: 15px; margin: 10px 0; border-radius: 8px; }
.chat-container { height: 500px; }
"""
) as demo:
gr.Markdown("# π€ RAG Chatbot with Gemini API")
gr.Markdown("### Upload a PDF and ask questions about it using Retrieval-Augmented Generation powered by Google's Gemini API")
with gr.Row():
status_display = gr.Markdown(f"**Status:** {model_status}")
# Add refresh button for status
refresh_btn = gr.Button("βΎοΈ Refresh Status", size="sm")
def update_status():
return get_model_status()
refresh_btn.click(
fn=update_status,
outputs=[status_display]
)
with gr.Row():
# Left column - PDF upload
with gr.Column(scale=1):
gr.Markdown("## π Upload PDF")
pdf_input = gr.File(
file_types=[".pdf"],
label="Upload PDF Document"
)
process_btn = gr.Button(
"π Process PDF",
variant="primary",
size="lg"
)
status_output = gr.Markdown(
"Upload a PDF to get started",
elem_classes="status-box"
)
clear_btn = gr.Button(
"ποΈ Clear All",
variant="secondary"
)
# Right column - Chat
with gr.Column(scale=2):
gr.Markdown("## π¬ Ask Questions")
chatbot = gr.Chatbot(
value=[],
height=400,
elem_classes="chat-container"
)
with gr.Row():
msg_input = gr.Textbox(
placeholder="Ask a question about your PDF...",
scale=4,
container=False
)
send_btn = gr.Button("Send", variant="primary", scale=1)
# Event handlers
process_btn.click(
fn=process_pdf,
inputs=[pdf_input],
outputs=[status_output],
show_progress=True
)
send_btn.click(
fn=chat_with_pdf,
inputs=[msg_input, chatbot],
outputs=[chatbot]
).then(
lambda: "",
outputs=[msg_input]
)
msg_input.submit(
fn=chat_with_pdf,
inputs=[msg_input, chatbot],
outputs=[chatbot]
).then(
lambda: "",
outputs=[msg_input]
)
clear_btn.click(
fn=clear_chat,
outputs=[chatbot, status_output]
)
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
) |