File size: 20,098 Bytes
ee78b3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
"""
Gradio interface for DOLPHIN model
"""

import gradio as gr
import json
import markdown
from markdown.extensions import codehilite
import cv2
import numpy as np
from PIL import Image
from transformers import AutoProcessor, VisionEncoderDecoderModel
import torch
import os
from utils.utils import *
from utils.markdown_utils import MarkdownConverter

try:
    from mdx_math import MathExtension
    MATH_EXTENSION_AVAILABLE = True
except ImportError:
    MATH_EXTENSION_AVAILABLE = False


class DOLPHIN:
    def __init__(self, model_id_or_path):
        """Initialize the Hugging Face model
        
        Args:
            model_id_or_path: Path to local model or Hugging Face model ID
        """
        self.processor = AutoProcessor.from_pretrained(model_id_or_path)
        self.model = VisionEncoderDecoderModel.from_pretrained(model_id_or_path)
        self.model.eval()
        
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.model.to(self.device)
        if self.device == "cuda":
            self.model = self.model.half()
        
        self.tokenizer = self.processor.tokenizer
        
    def chat(self, prompt, image):
        """Process an image or batch of images with the given prompt(s)
        
        Args:
            prompt: Text prompt or list of prompts to guide the model
            image: PIL Image or list of PIL Images to process
            
        Returns:
            Generated text or list of texts from the model
        """
        # Check if we're dealing with a batch
        is_batch = isinstance(image, list)
        
        if not is_batch:
            # Single image, wrap it in a list for consistent processing
            images = [image]
            prompts = [prompt]
        else:
            # Batch of images
            images = image
            prompts = prompt if isinstance(prompt, list) else [prompt] * len(images)
        
        # Prepare image
        batch_inputs = self.processor(images, return_tensors="pt", padding=True)
        batch_pixel_values = batch_inputs.pixel_values
        if self.device == "cuda":
            batch_pixel_values = batch_pixel_values.half()
        batch_pixel_values = batch_pixel_values.to(self.device)
        
        # Prepare prompt
        prompts = [f"<s>{p} <Answer/>" for p in prompts]
        batch_prompt_inputs = self.tokenizer(
            prompts,
            add_special_tokens=False,
            return_tensors="pt"
        )

        batch_prompt_ids = batch_prompt_inputs.input_ids.to(self.device)
        batch_attention_mask = batch_prompt_inputs.attention_mask.to(self.device)
        
        # Generate text
        outputs = self.model.generate(
            pixel_values=batch_pixel_values,
            decoder_input_ids=batch_prompt_ids,
            decoder_attention_mask=batch_attention_mask,
            min_length=1,
            max_length=4096,
            pad_token_id=self.tokenizer.pad_token_id,
            eos_token_id=self.tokenizer.eos_token_id,
            use_cache=True,
            bad_words_ids=[[self.tokenizer.unk_token_id]],
            return_dict_in_generate=True,
            do_sample=False,
            num_beams=1,
            repetition_penalty=1.1,
            temperature=1.0
        )
        
        # Process output
        sequences = self.tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)
        
        # Clean prompt text from output
        results = []
        for i, sequence in enumerate(sequences):
            cleaned = sequence.replace(prompts[i], "").replace("<pad>", "").replace("</s>", "").strip()
            results.append(cleaned)
            
        # Return a single result for single image input
        if not is_batch:
            return results[0]
        return results


def render_markdown_with_math(markdown_content):
    """Convert markdown to HTML with MathJax support that works in Gradio"""
    import re
    
    # Convert basic markdown to HTML first
    html_content = markdown.markdown(markdown_content)
    
    # Create a complete HTML document with MathJax
    html_with_math = f"""
<!DOCTYPE html>
<html>
<head>
    <meta charset="utf-8">
    <style>
        body {{
            font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;
            line-height: 1.6;
            color: #333;
            max-width: 100%;
            margin: 0;
            padding: 20px;
        }}
        .math-container {{
            margin: 15px 0;
        }}
        .display-math {{
            text-align: center;
            margin: 20px 0;
        }}
        .inline-math {{
            display: inline;
        }}
        table {{
            border-collapse: collapse;
            width: 100%;
            margin: 15px 0;
        }}
        th, td {{
            border: 1px solid #ddd;
            padding: 8px;
            text-align: left;
        }}
        th {{
            background-color: #f2f2f2;
        }}
        pre {{
            background-color: #f5f5f5;
            padding: 10px;
            border-radius: 4px;
            overflow-x: auto;
        }}
        code {{
            background-color: #f5f5f5;
            padding: 2px 4px;
            border-radius: 3px;
            font-family: 'Courier New', monospace;
        }}
    </style>
    <script>
        window.MathJax = {{
            tex: {{
                inlineMath: [['$', '$'], ['\\\\(', '\\\\)']],
                displayMath: [['$$', '$$'], ['\\\\[', '\\\\]']],
                processEscapes: true,
                processEnvironments: true,
                tags: 'ams',
                autoload: {{
                    color: [],
                    colorv2: ['color']
                }},
                packages: {{'[+]': ['noerrors']}}
            }},
            options: {{
                ignoreHtmlClass: 'tex2jax_ignore',
                processHtmlClass: 'tex2jax_process'
            }},
            loader: {{
                load: ['[tex]/noerrors']
            }}
        }};
        
        // Function to trigger MathJax processing after content loads
        function processMath() {{
            if (window.MathJax && window.MathJax.typesetPromise) {{
                window.MathJax.typesetPromise().catch(function (err) {{
                    console.log('MathJax typeset failed: ' + err.message);
                }});
            }}
        }}
        
        // Process math when page loads
        document.addEventListener('DOMContentLoaded', function() {{
            setTimeout(processMath, 100);
        }});
        
        // Also process when MathJax loads
        window.addEventListener('load', function() {{
            setTimeout(processMath, 200);
        }});
    </script>
    <script type="text/javascript" id="MathJax-script" async
        src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"
        onload="processMath()">
    </script>
</head>
<body>
    <div class="tex2jax_process">
        {html_content}
    </div>
    <script>
        // Additional processing trigger
        setTimeout(function() {{
            if (window.MathJax && window.MathJax.typesetPromise) {{
                window.MathJax.typesetPromise();
            }}
        }}, 500);
    </script>
</body>
</html>
"""
    
    return html_with_math


def process_elements(layout_results, padded_image, dims, model, max_batch_size=16, save_dir=None, image_name="gradio_session"):
    """Parse all document elements with parallel decoding"""
    layout_results = parse_layout_string(layout_results)

    # Store text and table elements separately
    text_elements = []  # Text elements
    table_elements = []  # Table elements
    figure_results = []  # Image elements (saved as files)
    previous_box = None
    reading_order = 0

    # Setup output directories if save_dir is provided
    if save_dir:
        setup_output_dirs(save_dir)

    # Collect elements to process and group by type
    for bbox, label in layout_results:
        try:
            # Adjust coordinates
            x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, previous_box = process_coordinates(
                bbox, padded_image, dims, previous_box
            )

            # Crop and parse element
            cropped = padded_image[y1:y2, x1:x2]
            if cropped.size > 0 and cropped.shape[0] > 3 and cropped.shape[1] > 3:
                if label == "fig":
                    # Convert cropped OpenCV image to PIL
                    pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
                    
                    # Apply margin cropping to remove white space around the figure
                    pil_crop = crop_margin(pil_crop)
                    
                    # Convert to base64 for Gradio display (works better than file paths)
                    import base64
                    import io
                    buffered = io.BytesIO()
                    pil_crop.save(buffered, format="PNG")
                    img_base64 = base64.b64encode(buffered.getvalue()).decode()
                    
                    # Create data URI for direct embedding in markdown
                    data_uri = f"data:image/png;base64,{img_base64}"
                    
                    figure_results.append(
                        {
                            "label": label,
                            "text": data_uri,  # Pass base64 directly to _handle_figure
                            "figure_base64": data_uri,
                            "bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
                            "reading_order": reading_order,
                        }
                    )
                else:
                    # Prepare element for parsing
                    pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
                    element_info = {
                        "crop": pil_crop,
                        "label": label,
                        "bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
                        "reading_order": reading_order,
                    }
                    
                    # Group by type
                    if label == "tab":
                        table_elements.append(element_info)
                    else:  # Text elements
                        text_elements.append(element_info)

            reading_order += 1

        except Exception as e:
            print(f"Error processing bbox with label {label}: {str(e)}")
            continue

    # Initialize results list
    recognition_results = figure_results.copy()
    
    # Process text elements (in batches)
    if text_elements:
        text_results = process_element_batch(text_elements, model, "Read text in the image.", max_batch_size)
        recognition_results.extend(text_results)
    
    # Process table elements (in batches)
    if table_elements:
        table_results = process_element_batch(table_elements, model, "Parse the table in the image.", max_batch_size)
        recognition_results.extend(table_results)

    # Sort elements by reading order
    recognition_results.sort(key=lambda x: x.get("reading_order", 0))

    return recognition_results


def process_element_batch(elements, model, prompt, max_batch_size=16):
    """Process elements of the same type in batches"""
    results = []
    
    # Determine batch size
    batch_size = len(elements)
    if max_batch_size is not None and max_batch_size > 0:
        batch_size = min(batch_size, max_batch_size)
    
    # Process in batches
    for i in range(0, len(elements), batch_size):
        batch_elements = elements[i:i+batch_size]
        crops_list = [elem["crop"] for elem in batch_elements]
        
        # Use the same prompt for all elements in the batch
        prompts_list = [prompt] * len(crops_list)
        
        # Batch inference
        batch_results = model.chat(prompts_list, crops_list)
        
        # Add results
        for j, result in enumerate(batch_results):
            elem = batch_elements[j]
            results.append({
                "label": elem["label"],
                "bbox": elem["bbox"],
                "text": result.strip(),
                "reading_order": elem["reading_order"],
            })
    
    return results


# Initialize model
model_path = "./hf_model"
if not os.path.exists(model_path):
    model_path = "ByteDance/DOLPHIN"

try:
    dolphin_model = DOLPHIN(model_path)
    print(f"Model loaded successfully from {model_path}")
except Exception as e:
    print(f"Error loading model: {e}")
    dolphin_model = None


def process_image(image, task_type):
    """Process uploaded image and return results in different formats"""
    if dolphin_model is None:
        return None, "Model not loaded", "Model not loaded", {"error": "Model not loaded"}
    
    if image is None:
        return None, "No image uploaded", "No image uploaded", {"error": "No image uploaded"}
    
    try:
        # Convert to PIL Image if needed
        if hasattr(image, 'convert'):
            pil_image = image.convert("RGB")
        else:
            pil_image = Image.fromarray(image).convert("RGB")
        
        if task_type == "Document Parsing":
            # Full document processing with two stages
            # Stage 1: Page-level layout and reading order parsing
            layout_output = dolphin_model.chat("Parse the reading order of this document.", pil_image)
            
            # Stage 2: Element-level content parsing with image extraction
            import tempfile
            import uuid
            
            # Create temporary directory for saving figures
            temp_dir = tempfile.mkdtemp()
            session_id = str(uuid.uuid4())[:8]
            
            padded_image, dims = prepare_image(pil_image)
            recognition_results = process_elements(
                layout_output, 
                padded_image, 
                dims, 
                dolphin_model, 
                max_batch_size=16,
                save_dir=temp_dir,
                image_name=f"session_{session_id}"
            )
            
            # Convert to markdown
            try:
                markdown_converter = MarkdownConverter()
                markdown_content = markdown_converter.convert(recognition_results)
            except:
                # Fallback if markdown converter fails
                markdown_content = ""
                for element in recognition_results:
                    if element["label"] == "tab":
                        markdown_content += f"\n\n{element['text']}\n\n"
                    elif element["label"] in ["para", "title", "sec", "sub_sec"]:
                        markdown_content += f"{element['text']}\n\n"
                    elif element["label"] == "fig":
                        markdown_content += f"{element['text']}\n\n"
            
            # Create structured JSON output
            json_output = {
                "task_type": task_type,
                "layout_parsing": layout_output,
                "recognition_results": recognition_results,
                "model_info": {
                    "device": dolphin_model.device,
                    "model_path": model_path
                },
                "temp_dir": temp_dir
            }
            
            # Return markdown content directly for Gradio's built-in LaTeX support
            return pil_image, markdown_content, markdown_content, json_output
            
        else:
            # Simple element-level processing for other tasks
            if task_type == "Table Extraction":
                prompt = "Parse the table in the image."
            elif task_type == "Text Reading":
                prompt = "Read text in the image."
            elif task_type == "Formula Recognition":
                prompt = "Read text in the image."
            else:
                prompt = "Read text in the image."
            
            # Process with model
            result = dolphin_model.chat(prompt, pil_image)
            
            # Create JSON output
            json_output = {
                "task_type": task_type,
                "prompt": prompt,
                "result": result,
                "model_info": {
                    "device": dolphin_model.device,
                    "model_path": model_path
                }
            }
            
            return pil_image, result, result, json_output
        
    except Exception as e:
        error_msg = f"Error processing image: {str(e)}"
        return None, error_msg, error_msg, {"error": error_msg}


def clear_all():
    """Clear all inputs and outputs"""
    return None, None, "", "", {}


# Create Gradio interface
with gr.Blocks(title="DOLPHIN Document AI", theme=gr.themes.Soft()) as demo:
    gr.Markdown("# 🐬 DOLPHIN Document AI Interface")
    gr.Markdown("Upload an image and select a task to process with the DOLPHIN model")
    
    with gr.Row():
        # Column 1: Image Upload
        with gr.Column(scale=1):
            gr.Markdown("### πŸ“€ Upload Image")
            image_input = gr.Image(
                type="pil", 
                label="Upload Image",
                height=600
            )
            
            task_type = gr.Dropdown(
                choices=["Document Parsing", "Table Extraction", "Text Reading", "Formula Recognition"],
                value="Document Parsing",
                label="Task Type"
            )
            
            with gr.Row():
                submit_btn = gr.Button("πŸš€ Submit", variant="primary")
                cancel_btn = gr.Button("❌ Clear", variant="secondary")
        
        # Column 2: Image Preview
        with gr.Column(scale=1):
            gr.Markdown("### πŸ‘οΈ Image Preview")
            image_preview = gr.Image(
                type="pil",
                label="Uploaded Image",
                interactive=False,
                height=600
            )
        
        # Column 3: Results with Tabs
        with gr.Column(scale=1):
            gr.Markdown("### πŸ“‹ Results")
            with gr.Tabs():
                with gr.TabItem("πŸ“– Markdown Preview"):
                    markdown_preview = gr.Markdown(
                        label="Rendered Markdown",
                        latex_delimiters=[
                            {"left": "$$", "right": "$$", "display": True},
                            {"left": "$", "right": "$", "display": False},
                            {"left": "\\(", "right": "\\)", "display": False},
                            {"left": "\\[", "right": "\\]", "display": True}
                        ],
                        container=True,
                        height=600
                    )
                
                with gr.TabItem("πŸ“ Raw Markdown"):
                    raw_markdown = gr.Code(
                        label="Raw Markdown Text",
                        language="markdown",
                        container=True,
                        interactive=False,
                        lines=25
                    )
                
                with gr.TabItem("πŸ”§ JSON"):
                    json_output = gr.JSON(
                        label="JSON Output",
                        height=600
                    )
    
    # Event handlers
    submit_btn.click(
        fn=process_image,
        inputs=[image_input, task_type],
        outputs=[image_preview, markdown_preview, raw_markdown, json_output]
    )
    
    cancel_btn.click(
        fn=clear_all,
        outputs=[image_input, image_preview, markdown_preview, raw_markdown, json_output]
    )
    
    # Auto-update preview when image is uploaded
    image_input.change(
        fn=lambda img: img if img is not None else None,
        inputs=[image_input],
        outputs=[image_preview]
    )


if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        show_error=True
    )