File size: 18,617 Bytes
ee78b3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
"""
PDF Document Processing Gradio App for HuggingFace Spaces
Built on DOLPHIN model for document parsing and analysis
"""

import gradio as gr
import json
import markdown
import cv2
import numpy as np
from PIL import Image
from transformers import AutoProcessor, VisionEncoderDecoderModel
import torch
import os
import tempfile
import uuid
import base64
import io
from utils.utils import *
from utils.markdown_utils import MarkdownConverter

# Math extension is optional for enhanced math rendering
MATH_EXTENSION_AVAILABLE = False
try:
    from mdx_math import MathExtension
    MATH_EXTENSION_AVAILABLE = True
except ImportError:
    # mdx_math is not available in standard PyPI, gracefully continue without it
    pass


class DOLPHIN:
    def __init__(self, model_id_or_path):
        """Initialize the Hugging Face model optimized for HF Spaces
        
        Args:
            model_id_or_path: Path to local model or Hugging Face model ID
        """
        self.processor = AutoProcessor.from_pretrained(model_id_or_path)
        self.model = VisionEncoderDecoderModel.from_pretrained(
            model_id_or_path,
            torch_dtype=torch.float16,  # Use half precision for memory efficiency
            device_map="auto" if torch.cuda.is_available() else None
        )
        self.model.eval()
        
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        if not torch.cuda.is_available():
            # Keep full precision on CPU
            self.model = self.model.float()
        
        self.tokenizer = self.processor.tokenizer
        
    def chat(self, prompt, image):
        """Process an image or batch of images with the given prompt(s)"""
        is_batch = isinstance(image, list)
        
        if not is_batch:
            images = [image]
            prompts = [prompt]
        else:
            images = image
            prompts = prompt if isinstance(prompt, list) else [prompt] * len(images)
        
        # Prepare image
        batch_inputs = self.processor(images, return_tensors="pt", padding=True)
        batch_pixel_values = batch_inputs.pixel_values
        
        if torch.cuda.is_available():
            batch_pixel_values = batch_pixel_values.half().to(self.device)
        else:
            batch_pixel_values = batch_pixel_values.to(self.device)
        
        # Prepare prompt
        prompts = [f"<s>{p} <Answer/>" for p in prompts]
        batch_prompt_inputs = self.tokenizer(
            prompts,
            add_special_tokens=False,
            return_tensors="pt"
        )

        batch_prompt_ids = batch_prompt_inputs.input_ids.to(self.device)
        batch_attention_mask = batch_prompt_inputs.attention_mask.to(self.device)
        
        # Generate text with memory-efficient settings
        with torch.no_grad():
            outputs = self.model.generate(
                pixel_values=batch_pixel_values,
                decoder_input_ids=batch_prompt_ids,
                decoder_attention_mask=batch_attention_mask,
                min_length=1,
                max_length=2048,  # Reduced for memory efficiency
                pad_token_id=self.tokenizer.pad_token_id,
                eos_token_id=self.tokenizer.eos_token_id,
                use_cache=True,
                bad_words_ids=[[self.tokenizer.unk_token_id]],
                return_dict_in_generate=True,
                do_sample=False,
                num_beams=1,
                repetition_penalty=1.1,
                temperature=1.0
            )
        
        # Process output
        sequences = self.tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)
        
        # Clean prompt text from output
        results = []
        for i, sequence in enumerate(sequences):
            cleaned = sequence.replace(prompts[i], "").replace("<pad>", "").replace("</s>", "").strip()
            results.append(cleaned)
            
        if not is_batch:
            return results[0]
        return results


def convert_pdf_to_images_gradio(pdf_file):
    """Convert uploaded PDF file to list of PIL Images"""
    try:
        import pymupdf
        
        # Handle different file input types
        if isinstance(pdf_file, str):
            # If it's a file path (Gradio 5.x behavior)
            pdf_document = pymupdf.open(pdf_file)
        else:
            # If it's a file object with .read() method
            pdf_bytes = pdf_file.read()
            pdf_document = pymupdf.open(stream=pdf_bytes, filetype="pdf")
        
        images = []
        for page_num in range(len(pdf_document)):
            page = pdf_document[page_num]
            
            # Render page to image with high DPI for better quality
            mat = pymupdf.Matrix(2.0, 2.0)  # 2x zoom for better quality
            pix = page.get_pixmap(matrix=mat)
            
            # Convert to PIL Image
            img_data = pix.tobytes("png")
            pil_image = Image.open(io.BytesIO(img_data)).convert("RGB")
            images.append(pil_image)
        
        pdf_document.close()
        return images
        
    except Exception as e:
        raise Exception(f"Error converting PDF: {str(e)}")


def process_pdf_document(pdf_file, model, progress=gr.Progress()):
    """Process uploaded PDF file page by page"""
    if pdf_file is None:
        return "No PDF file uploaded", [], {}
    
    try:
        # Convert PDF to images
        progress(0.1, desc="Converting PDF to images...")
        images = convert_pdf_to_images_gradio(pdf_file)
        
        if not images:
            return "Failed to convert PDF to images", [], {}
        
        # Process each page
        all_results = []
        page_previews = []
        
        for page_idx, pil_image in enumerate(images):
            progress((page_idx + 1) / len(images) * 0.8 + 0.1, 
                    desc=f"Processing page {page_idx + 1}/{len(images)}...")
            
            # Stage 1: Layout parsing
            layout_output = model.chat("Parse the reading order of this document.", pil_image)
            
            # Stage 2: Element processing with memory optimization
            padded_image, dims = prepare_image(pil_image)
            recognition_results = process_elements_optimized(
                layout_output, 
                padded_image, 
                dims, 
                model, 
                max_batch_size=4  # Smaller batch size for memory efficiency
            )
            
            # Convert to markdown
            try:
                markdown_converter = MarkdownConverter()
                markdown_content = markdown_converter.convert(recognition_results)
            except:
                # Fallback markdown generation
                markdown_content = generate_fallback_markdown(recognition_results)
            
            # Store page results
            page_result = {
                "page_number": page_idx + 1,
                "layout_output": layout_output,
                "elements": recognition_results,
                "markdown": markdown_content
            }
            all_results.append(page_result)
            
            # Create page preview with results
            page_preview = {
                "image": pil_image,
                "page_num": page_idx + 1,
                "element_count": len(recognition_results),
                "markdown_preview": markdown_content[:500] + "..." if len(markdown_content) > 500 else markdown_content
            }
            page_previews.append(page_preview)
        
        progress(1.0, desc="Processing complete!")
        
        # Combine all markdown
        combined_markdown = "\n\n---\n\n".join([
            f"# Page {result['page_number']}\n\n{result['markdown']}" 
            for result in all_results
        ])
        
        # Create summary JSON
        summary_json = {
            "total_pages": len(images),
            "processing_status": "completed",
            "pages": all_results,
            "model_info": {
                "device": model.device,
                "total_elements": sum(len(page["elements"]) for page in all_results)
            }
        }
        
        return combined_markdown, page_previews, summary_json
        
    except Exception as e:
        error_msg = f"Error processing PDF: {str(e)}"
        return error_msg, [], {"error": error_msg}


def process_elements_optimized(layout_results, padded_image, dims, model, max_batch_size=4):
    """Optimized element processing for memory efficiency"""
    layout_results = parse_layout_string(layout_results)
    
    text_elements = []
    table_elements = []
    figure_results = []
    previous_box = None
    reading_order = 0
    
    # Collect elements to process
    for bbox, label in layout_results:
        try:
            x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, previous_box = process_coordinates(
                bbox, padded_image, dims, previous_box
            )
            
            cropped = padded_image[y1:y2, x1:x2]
            if cropped.size > 0 and cropped.shape[0] > 3 and cropped.shape[1] > 3:
                if label == "fig":
                    # Convert to base64 for figure display
                    pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
                    pil_crop = crop_margin(pil_crop)
                    
                    buffered = io.BytesIO()
                    pil_crop.save(buffered, format="PNG")
                    img_base64 = base64.b64encode(buffered.getvalue()).decode()
                    data_uri = f"data:image/png;base64,{img_base64}"
                    
                    figure_results.append({
                        "label": label,
                        "text": f"![Figure {reading_order}]({data_uri})",
                        "bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
                        "reading_order": reading_order,
                    })
                else:
                    pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
                    element_info = {
                        "crop": pil_crop,
                        "label": label,
                        "bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
                        "reading_order": reading_order,
                    }
                    
                    if label == "tab":
                        table_elements.append(element_info)
                    else:
                        text_elements.append(element_info)
                        
            reading_order += 1
            
        except Exception as e:
            print(f"Error processing element {label}: {str(e)}")
            continue
    
    # Process elements in small batches
    recognition_results = figure_results.copy()
    
    if text_elements:
        text_results = process_element_batch_optimized(
            text_elements, model, "Read text in the image.", max_batch_size
        )
        recognition_results.extend(text_results)
    
    if table_elements:
        table_results = process_element_batch_optimized(
            table_elements, model, "Parse the table in the image.", max_batch_size
        )
        recognition_results.extend(table_results)
    
    recognition_results.sort(key=lambda x: x.get("reading_order", 0))
    return recognition_results


def process_element_batch_optimized(elements, model, prompt, max_batch_size=4):
    """Process elements in small batches for memory efficiency"""
    results = []
    batch_size = min(len(elements), max_batch_size)
    
    for i in range(0, len(elements), batch_size):
        batch_elements = elements[i:i+batch_size]
        crops_list = [elem["crop"] for elem in batch_elements]
        prompts_list = [prompt] * len(crops_list)
        
        # Process batch
        batch_results = model.chat(prompts_list, crops_list)
        
        for j, result in enumerate(batch_results):
            elem = batch_elements[j]
            results.append({
                "label": elem["label"],
                "bbox": elem["bbox"],
                "text": result.strip(),
                "reading_order": elem["reading_order"],
            })
            
        # Clear memory
        del crops_list, batch_elements
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
    
    return results


def generate_fallback_markdown(recognition_results):
    """Generate basic markdown if converter fails"""
    markdown_content = ""
    for element in recognition_results:
        if element["label"] == "tab":
            markdown_content += f"\n\n{element['text']}\n\n"
        elif element["label"] in ["para", "title", "sec", "sub_sec"]:
            markdown_content += f"{element['text']}\n\n"
        elif element["label"] == "fig":
            markdown_content += f"{element['text']}\n\n"
    return markdown_content


def create_page_gallery(page_previews):
    """Create a gallery view of processed pages"""
    if not page_previews:
        return "No pages processed yet."
    
    gallery_html = "<div style='display: grid; grid-template-columns: repeat(auto-fit, minmax(300px, 1fr)); gap: 20px;'>"
    
    for preview in page_previews:
        gallery_html += f"""
        <div style='border: 1px solid #ddd; padding: 15px; border-radius: 8px;'>
            <h3>Page {preview['page_num']}</h3>
            <p><strong>Elements found:</strong> {preview['element_count']}</p>
            <div style='max-height: 200px; overflow-y: auto; background: #f5f5f5; padding: 10px; border-radius: 4px; font-size: 12px;'>
                {preview['markdown_preview']}
            </div>
        </div>
        """
    
    gallery_html += "</div>"
    return gallery_html


# Initialize model
model_path = "./hf_model"
if not os.path.exists(model_path):
    model_path = "ByteDance/DOLPHIN"

try:
    dolphin_model = DOLPHIN(model_path)
    print(f"Model loaded successfully from {model_path}")
    model_status = f"βœ… Model loaded: {model_path} (Device: {dolphin_model.device})"
except Exception as e:
    print(f"Error loading model: {e}")
    dolphin_model = None
    model_status = f"❌ Model failed to load: {str(e)}"


def process_uploaded_pdf(pdf_file, progress=gr.Progress()):
    """Main processing function for uploaded PDF"""
    if dolphin_model is None:
        return "Model not loaded", "Model not loaded", {}, "Model not loaded"
    
    if pdf_file is None:
        return "No PDF uploaded", "No PDF uploaded", {}, "No PDF uploaded"
    
    try:
        # Process the PDF
        combined_markdown, page_previews, summary_json = process_pdf_document(
            pdf_file, dolphin_model, progress
        )
        
        # Create page gallery
        gallery_html = create_page_gallery(page_previews)
        
        return combined_markdown, combined_markdown, summary_json, gallery_html
        
    except Exception as e:
        error_msg = f"Error processing PDF: {str(e)}"
        return error_msg, error_msg, {"error": error_msg}, error_msg


def clear_all():
    """Clear all inputs and outputs"""
    return None, "", "", {}, ""


# Create Gradio interface optimized for HuggingFace Spaces
with gr.Blocks(
    title="DOLPHIN PDF Document AI", 
    theme=gr.themes.Soft(),
    css="""
    .main-container { max-width: 1200px; margin: 0 auto; }
    .status-box { padding: 10px; border-radius: 5px; margin: 10px 0; }
    .success { background-color: #d4edda; border: 1px solid #c3e6cb; }
    .error { background-color: #f8d7da; border: 1px solid #f5c6cb; }
    """
) as demo:
    gr.Markdown("# 🐬 DOLPHIN PDF Document AI")
    gr.Markdown(
        "Upload a PDF document and process it page by page with the DOLPHIN model. "
        "Optimized for HuggingFace Spaces deployment."
    )
    
    # Model status
    gr.Markdown(f"**Model Status:** {model_status}")
    
    with gr.Row():
        # Left column: Upload and controls
        with gr.Column(scale=1):
            gr.Markdown("### πŸ“„ Upload PDF Document")
            pdf_input = gr.File(
                file_types=[".pdf"],
                label="Select PDF File",
                height=200
            )
            
            with gr.Row():
                process_btn = gr.Button("πŸš€ Process PDF", variant="primary", size="lg")
                clear_btn = gr.Button("πŸ—‘οΈ Clear All", variant="secondary")
        
        # Right column: Results tabs
        with gr.Column(scale=2):
            gr.Markdown("### πŸ“Š Processing Results")
            
            with gr.Tabs():
                with gr.TabItem("πŸ“– Markdown Output"):
                    markdown_output = gr.Markdown(
                        label="Processed Document",
                        latex_delimiters=[
                            {"left": "$$", "right": "$$", "display": True},
                            {"left": "$", "right": "$", "display": False}
                        ],
                        height=600
                    )
                
                with gr.TabItem("πŸ“ Raw Markdown"):
                    raw_markdown = gr.Code(
                        label="Raw Markdown Text",
                        language="markdown",
                        lines=25
                    )
                
                with gr.TabItem("πŸ” Page Gallery"):
                    page_gallery = gr.HTML(
                        label="Page Overview"
                    )
                
                with gr.TabItem("πŸ”§ JSON Details"):
                    json_output = gr.JSON(
                        label="Processing Details",
                        height=600
                    )
    
    # Progress bar
    progress_bar = gr.HTML(visible=False)
    
    # Event handlers
    process_btn.click(
        fn=process_uploaded_pdf,
        inputs=[pdf_input],
        outputs=[markdown_output, raw_markdown, json_output, page_gallery],
        show_progress=True
    )
    
    clear_btn.click(
        fn=clear_all,
        outputs=[pdf_input, markdown_output, raw_markdown, json_output, page_gallery]
    )
    
    # Footer
    gr.Markdown(
        "---\n"
        "**Note:** This app is optimized for NVIDIA T4 deployment on HuggingFace Spaces. "
        "Processing time depends on document complexity and page count."
    )


if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        show_error=True,
        max_threads=2,  # Limit threads for memory efficiency
        inbrowser=False,
        quiet=True
    )