File size: 16,585 Bytes
ee78b3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
"""
Copyright (c) 2022-present NAVER Corp.
Copyright (c) 2025 Bytedance Ltd. and/or its affiliates.
MIT License
This file has been modified by [ByteDance Ltd. and/or its affiliates] on 20250118.
The original file available at https://github.com/clovaai/donut/blob/master/donut/model.py was released under the MIT license.
This modified file is released under the same license.
"""

import logging
from collections import defaultdict
from typing import List, Optional

import torch
import torch.nn.functional as F
from PIL import Image
from timm.models.swin_transformer import SwinTransformer
from torch import nn
from transformers import (
    MBartConfig,
    MBartForCausalLM,
    StoppingCriteria,
    StoppingCriteriaList,
)
from transformers.file_utils import ModelOutput
from transformers.modeling_utils import PretrainedConfig, PreTrainedModel


class SwinEncoder(nn.Module):
    r"""
    Encoder based on SwinTransformer
    Set the initial weights and configuration with a pretrained SwinTransformer and then
    modify the detailed configurations

    Args:
        input_size: Input image size (width, height)
        align_long_axis: Whether to rotate image if height is greater than width
        window_size: Window size(=patch size) of SwinTransformer
        encoder_layer: Number of layers of SwinTransformer encoder
        name_or_path: Name of a pretrained model name either registered in huggingface.co. or saved in local.
                      otherwise, `swin_base_patch4_window12_384` will be set (using `timm`).
    """

    def __init__(
        self,
        input_size,
        align_long_axis: bool = False,
        window_size: int = 7,
        encoder_layer: List[int] = [2, 2, 14, 2],
        patch_size: int = [4, 4],
        embed_dim: int = 128,
        num_heads: List[int] = [4, 8, 16, 32],
    ):
        super().__init__()
        if isinstance(input_size, int):
            input_size = [input_size, input_size]
        self.input_size = input_size
        self.align_long_axis = align_long_axis
        self.window_size = window_size
        self.encoder_layer = encoder_layer
        self.patch_size = patch_size
        self.embed_dim = embed_dim
        self.num_heads = num_heads

        self.model = SwinTransformer(
            img_size=self.input_size,
            depths=self.encoder_layer,
            window_size=self.window_size,
            patch_size=self.patch_size,
            embed_dim=self.embed_dim,
            num_heads=self.num_heads,
            num_classes=0,
        )

    def forward(self, x: torch.Tensor, text_embedding: Optional[torch.Tensor] = None) -> torch.Tensor:
        """
        Args:
            x: (batch_size, num_channels, height, width)
        """
        x = self.model.patch_embed(x)
        x = self.model.pos_drop(x)
        x = self.model.layers(x)
        return x


class LayerNorm(nn.LayerNorm):
    """Subclass torch's LayerNorm to handle fp16."""

    def _set_dtype(self, dtype):
        self._dtype = dtype

    def forward(self, x: torch.Tensor):
        orig_type = x.dtype
        ret = super().forward(x.type(dtype=self._dtype))
        return ret.type(orig_type)


class BARTDecoder(nn.Module):
    """
    Decoder based on Multilingual BART
    Set the initial weights and configuration with a pretrained multilingual BART model,
    and modify the detailed configurations as a Donut decoder

    Args:
        decoder_layer:
            Number of layers of BARTDecoder
        max_position_embeddings:
            The maximum sequence length to be trained
        name_or_path:
            Name of a pretrained model name either registered in huggingface.co. or saved in local,
            otherwise, `facebook/mbart-large-50` will be set (using `transformers`)
    """

    def __init__(
        self,
        tokenizer,
        decoder_layer: int,
        max_position_embeddings: int,
        hidden_dimension: int = 1024,
        **kwargs,
    ):
        super().__init__()
        self.decoder_layer = decoder_layer
        self.max_position_embeddings = max_position_embeddings
        self.hidden_dimension = hidden_dimension

        self.tokenizer = tokenizer

        self.model = MBartForCausalLM(
            config=MBartConfig(
                tie_word_embeddings=True,
                is_decoder=True,
                is_encoder_decoder=False,
                add_cross_attention=True,
                decoder_layers=self.decoder_layer,
                max_position_embeddings=self.max_position_embeddings,
                vocab_size=len(self.tokenizer),
                scale_embedding=True,
                add_final_layer_norm=True,
                d_model=self.hidden_dimension,
            )
        )
        # self.model.config.is_encoder_decoder = True  # to get cross-attention
        self.model.model.decoder.embed_tokens.padding_idx = self.tokenizer.pad_token_id
        self.model.prepare_inputs_for_generation = self.prepare_inputs_for_inference

    def add_special_tokens(self, list_of_tokens: List[str]):
        """
        Add special tokens to tokenizer and resize the token embeddings
        """
        newly_added_num = self.tokenizer.add_special_tokens({"additional_special_tokens": sorted(set(list_of_tokens))})
        if newly_added_num > 0:
            self.model.resize_token_embeddings(len(self.tokenizer))

    def add_tokens(self, list_of_tokens: List[str]):
        """
        Add special tokens to tokenizer and resize the token embeddings
        """
        newly_added_num = self.tokenizer.add_tokens(sorted(set(list_of_tokens)))
        if newly_added_num > 0:
            self.model.resize_token_embeddings(len(self.tokenizer))

    def prepare_inputs_for_inference(
        self,
        input_ids: torch.Tensor,
        encoder_outputs: torch.Tensor,
        past=None,
        past_key_values=None,
        use_cache: bool = None,
        attention_mask: torch.Tensor = None,
        **kwargs,
    ):
        """
        Args:
            input_ids: (batch_size, sequence_length)

        Returns:
            input_ids: (batch_size, sequence_length)
            attention_mask: (batch_size, sequence_length)
            encoder_hidden_states: (batch_size, sequence_length, embedding_dim)
        """
        attention_mask = input_ids.ne(self.tokenizer.pad_token_id).long()
        past = past or past_key_values
        if past is not None:
            input_ids = input_ids[:, -1:]
        output = {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
            "past_key_values": past,
            "use_cache": use_cache,
            "encoder_hidden_states": encoder_outputs.last_hidden_state,
        }
        return output

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        past_key_values: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.Tensor] = None,
        use_cache: bool = None,
        output_attentions: Optional[torch.Tensor] = None,
        output_hidden_states: Optional[torch.Tensor] = None,
        return_dict: bool = None,
    ):
        return self.model.forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            labels=labels,
            encoder_hidden_states=encoder_hidden_states,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

    @staticmethod
    def resize_bart_abs_pos_emb(weight: torch.Tensor, max_length: int) -> torch.Tensor:
        """
        Resize position embeddings
        Truncate if sequence length of MBart backbone is greater than given max_length,
        else interpolate to max_length
        """
        if weight.shape[0] > max_length:
            weight = weight[:max_length, ...]
        else:
            weight = (
                F.interpolate(
                    weight.permute(1, 0).unsqueeze(0),
                    size=max_length,
                    mode="linear",
                    align_corners=False,
                )
                .squeeze(0)
                .permute(1, 0)
            )
        return weight


class DonutConfig(PretrainedConfig):

    def __init__(
        self,
        decoder_layer: int = 10,
        max_position_embeddings: int = None,
        max_length: int = 4096,
        hidden_dimension: int = 1024,
        **kwargs,
    ):
        super().__init__()
        self.decoder_layer = decoder_layer
        self.max_position_embeddings = max_length if max_position_embeddings is None else max_position_embeddings
        self.max_length = max_length
        self.hidden_dimension = hidden_dimension


class RunningVarTorch:
    def __init__(self, L=15, norm=False):
        self.values = None
        self.L = L
        self.norm = norm

    def push(self, x: torch.Tensor):
        assert x.dim() == 1
        if self.values is None:
            self.values = x[:, None]
        elif self.values.shape[1] < self.L:
            self.values = torch.cat((self.values, x[:, None]), 1)
        else:
            self.values = torch.cat((self.values[:, 1:], x[:, None]), 1)

    def variance(self):
        if self.values is None:
            return
        if self.norm:
            return torch.var(self.values, 1) / self.values.shape[1]
        else:
            return torch.var(self.values, 1)


class StoppingCriteriaScores(StoppingCriteria):
    def __init__(self, threshold: float = 0.015, window_size: int = 200):
        super().__init__()
        self.threshold = threshold
        self.vars = RunningVarTorch(norm=True)
        self.varvars = RunningVarTorch(L=window_size)
        self.stop_inds = defaultdict(int)
        self.stopped = defaultdict(bool)
        self.size = 0
        self.window_size = window_size

    @torch.no_grad()
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
        last_scores = scores[-1]
        self.vars.push(last_scores.max(1)[0].float().cpu())
        self.varvars.push(self.vars.variance())
        self.size += 1
        if self.size < self.window_size:
            return False

        varvar = self.varvars.variance()
        for b in range(len(last_scores)):
            if varvar[b] < self.threshold:
                if self.stop_inds[b] > 0 and not self.stopped[b]:
                    self.stopped[b] = self.stop_inds[b] >= self.size
                else:
                    self.stop_inds[b] = int(min(max(self.size, 1) * 1.15 + 150 + self.window_size, 4095))
            else:
                self.stop_inds[b] = 0
                self.stopped[b] = False
        return all(self.stopped.values()) and len(self.stopped) > 0


def batch(l, b=15):
    subs = []
    for i in range(len(l) - b):
        subs.append(l[i : i + b])
    return subs


def subdiv(l, b=10):
    subs = []
    for i in range(len(l) - b):
        subs.append(l[: i + b])
    return subs


class DonutModel(PreTrainedModel):
    config_class = DonutConfig
    base_model_prefix = "donut"

    def __init__(self, config: DonutConfig, vision_tower=None, tokenizer=None):
        super().__init__(config)
        self.config = config

        self.tokenizer = tokenizer
        self.vpm = vision_tower

        # build language model
        self.llm = BARTDecoder(
            tokenizer=tokenizer,
            decoder_layer=self.config.decoder_layer,
            max_position_embeddings=self.config.max_position_embeddings,
            hidden_dimension=self.config.hidden_dimension,
        )
        self.ids_to_tokens = {id: content for content, id in self.llm.tokenizer.vocab.items()}

    def get_input_embeddings(self, tensor):
        return self.llm.model.get_input_embeddings()(tensor)

    def forward(
        self,
        inputs: dict,
    ):
        image_tensors = inputs["pixel_values"]
        input_ids = inputs["input_ids"].contiguous()
        attention_mask = inputs["attention_mask"]
        labels = inputs["labels"].contiguous()

        encoder_outputs = self.vpm(
            image_tensors,
            text_embedding=self.llm.model.get_input_embeddings()(input_ids),
        )

        decoder_outputs = self.llm(
            input_ids=input_ids,
            encoder_hidden_states=encoder_outputs,
            attention_mask=attention_mask,
            labels=labels,
        )
        return decoder_outputs

    def get_hidden_states_during_inference(
        self,
        prompt_ids: torch.Tensor,
        image: Image.Image = None,
        image_tensors: Optional[torch.Tensor] = None,
    ):
        if image_tensors is None:
            image_tensors = self.vpm.prepare_input(image).unsqueeze(0)

        if self.device.type != "mps":
            image_tensors = image_tensors.to(next(self.parameters()).dtype)

        image_tensors = image_tensors.to(self.device)
        prompt_ids = prompt_ids.to(self.device)
        all_hidden_states = self.vpm.forward_features(
            image_tensors, text_embedding=self.get_input_embeddings(prompt_ids)
        )
        return all_hidden_states

    def get_attn_weights_during_inference(
        self,
        prompt_ids: torch.Tensor,
        image: Image.Image = None,
        image_tensors: Optional[torch.Tensor] = None,
    ):
        if image_tensors is None:
            image_tensors = self.vpm.prepare_input(image).unsqueeze(0)

        if self.device.type != "mps":
            image_tensors = image_tensors.to(next(self.parameters()).dtype)

        image_tensors = image_tensors.to(self.device)
        prompt_ids = prompt_ids.to(self.device)
        last_attn_score = self.vpm.get_last_layer_cross_attn_score(
            image_tensors, text_embedding=self.get_input_embeddings(prompt_ids)
        )
        return last_attn_score

    def inference(
        self,
        prompt_ids: torch.Tensor,
        image: Image.Image = None,
        image_tensors: Optional[torch.Tensor] = None,
        return_attentions: bool = False,
        early_stopping: bool = True,
    ):
        """
        Generate a token sequence in an auto-regressive manner.

        Args:
            image: input document image (PIL.Image)
            image_tensors: (1, num_channels, height, width)
                convert prompt to tensor if image_tensor is not fed
        """
        output = {
            "predictions": list(),
            "sequences": list(),
            "repeats": list(),
            "repetitions": list(),
        }
        if image is None and image_tensors is None:
            logging.warn("Image not found")
            return output

        if image_tensors is None:
            image_tensors = self.vpm.prepare_input(image).unsqueeze(0)

        if self.device.type != "mps":
            image_tensors = image_tensors.to(next(self.parameters()).dtype)

        image_tensors = image_tensors.to(self.device)
        prompt_ids = prompt_ids.to(self.device)
        last_hidden_state = self.vpm(image_tensors, text_embedding=self.get_input_embeddings(prompt_ids))

        encoder_outputs = ModelOutput(last_hidden_state=last_hidden_state, attentions=None)
        if len(encoder_outputs.last_hidden_state.size()) == 1:
            encoder_outputs.last_hidden_state = encoder_outputs.last_hidden_state.unsqueeze(0)

        # get decoder output
        decoder_output = self.llm.model.generate(
            input_ids=prompt_ids,
            encoder_outputs=encoder_outputs,
            min_length=1,
            max_length=self.config.max_length,
            pad_token_id=self.llm.tokenizer.pad_token_id,
            eos_token_id=self.llm.tokenizer.eos_token_id,
            use_cache=True,
            return_dict_in_generate=True,
            output_scores=True,
            output_attentions=return_attentions,
            do_sample=False,
            num_beams=1,
            stopping_criteria=StoppingCriteriaList([StoppingCriteriaScores()] if early_stopping else []),
        )

        output["repetitions"] = decoder_output.sequences.clone()
        output["sequences"] = decoder_output.sequences.clone()
        output["scores"] = torch.stack(decoder_output.scores, 1).softmax(-1).cpu().max(-1)[0]

        output["repetitions"] = self.llm.tokenizer.batch_decode(output["repetitions"], skip_special_tokens=False)
        return output