Spaces:
Paused
Paused
File size: 16,585 Bytes
ee78b3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 |
"""
Copyright (c) 2022-present NAVER Corp.
Copyright (c) 2025 Bytedance Ltd. and/or its affiliates.
MIT License
This file has been modified by [ByteDance Ltd. and/or its affiliates] on 20250118.
The original file available at https://github.com/clovaai/donut/blob/master/donut/model.py was released under the MIT license.
This modified file is released under the same license.
"""
import logging
from collections import defaultdict
from typing import List, Optional
import torch
import torch.nn.functional as F
from PIL import Image
from timm.models.swin_transformer import SwinTransformer
from torch import nn
from transformers import (
MBartConfig,
MBartForCausalLM,
StoppingCriteria,
StoppingCriteriaList,
)
from transformers.file_utils import ModelOutput
from transformers.modeling_utils import PretrainedConfig, PreTrainedModel
class SwinEncoder(nn.Module):
r"""
Encoder based on SwinTransformer
Set the initial weights and configuration with a pretrained SwinTransformer and then
modify the detailed configurations
Args:
input_size: Input image size (width, height)
align_long_axis: Whether to rotate image if height is greater than width
window_size: Window size(=patch size) of SwinTransformer
encoder_layer: Number of layers of SwinTransformer encoder
name_or_path: Name of a pretrained model name either registered in huggingface.co. or saved in local.
otherwise, `swin_base_patch4_window12_384` will be set (using `timm`).
"""
def __init__(
self,
input_size,
align_long_axis: bool = False,
window_size: int = 7,
encoder_layer: List[int] = [2, 2, 14, 2],
patch_size: int = [4, 4],
embed_dim: int = 128,
num_heads: List[int] = [4, 8, 16, 32],
):
super().__init__()
if isinstance(input_size, int):
input_size = [input_size, input_size]
self.input_size = input_size
self.align_long_axis = align_long_axis
self.window_size = window_size
self.encoder_layer = encoder_layer
self.patch_size = patch_size
self.embed_dim = embed_dim
self.num_heads = num_heads
self.model = SwinTransformer(
img_size=self.input_size,
depths=self.encoder_layer,
window_size=self.window_size,
patch_size=self.patch_size,
embed_dim=self.embed_dim,
num_heads=self.num_heads,
num_classes=0,
)
def forward(self, x: torch.Tensor, text_embedding: Optional[torch.Tensor] = None) -> torch.Tensor:
"""
Args:
x: (batch_size, num_channels, height, width)
"""
x = self.model.patch_embed(x)
x = self.model.pos_drop(x)
x = self.model.layers(x)
return x
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def _set_dtype(self, dtype):
self._dtype = dtype
def forward(self, x: torch.Tensor):
orig_type = x.dtype
ret = super().forward(x.type(dtype=self._dtype))
return ret.type(orig_type)
class BARTDecoder(nn.Module):
"""
Decoder based on Multilingual BART
Set the initial weights and configuration with a pretrained multilingual BART model,
and modify the detailed configurations as a Donut decoder
Args:
decoder_layer:
Number of layers of BARTDecoder
max_position_embeddings:
The maximum sequence length to be trained
name_or_path:
Name of a pretrained model name either registered in huggingface.co. or saved in local,
otherwise, `facebook/mbart-large-50` will be set (using `transformers`)
"""
def __init__(
self,
tokenizer,
decoder_layer: int,
max_position_embeddings: int,
hidden_dimension: int = 1024,
**kwargs,
):
super().__init__()
self.decoder_layer = decoder_layer
self.max_position_embeddings = max_position_embeddings
self.hidden_dimension = hidden_dimension
self.tokenizer = tokenizer
self.model = MBartForCausalLM(
config=MBartConfig(
tie_word_embeddings=True,
is_decoder=True,
is_encoder_decoder=False,
add_cross_attention=True,
decoder_layers=self.decoder_layer,
max_position_embeddings=self.max_position_embeddings,
vocab_size=len(self.tokenizer),
scale_embedding=True,
add_final_layer_norm=True,
d_model=self.hidden_dimension,
)
)
# self.model.config.is_encoder_decoder = True # to get cross-attention
self.model.model.decoder.embed_tokens.padding_idx = self.tokenizer.pad_token_id
self.model.prepare_inputs_for_generation = self.prepare_inputs_for_inference
def add_special_tokens(self, list_of_tokens: List[str]):
"""
Add special tokens to tokenizer and resize the token embeddings
"""
newly_added_num = self.tokenizer.add_special_tokens({"additional_special_tokens": sorted(set(list_of_tokens))})
if newly_added_num > 0:
self.model.resize_token_embeddings(len(self.tokenizer))
def add_tokens(self, list_of_tokens: List[str]):
"""
Add special tokens to tokenizer and resize the token embeddings
"""
newly_added_num = self.tokenizer.add_tokens(sorted(set(list_of_tokens)))
if newly_added_num > 0:
self.model.resize_token_embeddings(len(self.tokenizer))
def prepare_inputs_for_inference(
self,
input_ids: torch.Tensor,
encoder_outputs: torch.Tensor,
past=None,
past_key_values=None,
use_cache: bool = None,
attention_mask: torch.Tensor = None,
**kwargs,
):
"""
Args:
input_ids: (batch_size, sequence_length)
Returns:
input_ids: (batch_size, sequence_length)
attention_mask: (batch_size, sequence_length)
encoder_hidden_states: (batch_size, sequence_length, embedding_dim)
"""
attention_mask = input_ids.ne(self.tokenizer.pad_token_id).long()
past = past or past_key_values
if past is not None:
input_ids = input_ids[:, -1:]
output = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"past_key_values": past,
"use_cache": use_cache,
"encoder_hidden_states": encoder_outputs.last_hidden_state,
}
return output
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
past_key_values: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: bool = None,
output_attentions: Optional[torch.Tensor] = None,
output_hidden_states: Optional[torch.Tensor] = None,
return_dict: bool = None,
):
return self.model.forward(
input_ids=input_ids,
attention_mask=attention_mask,
labels=labels,
encoder_hidden_states=encoder_hidden_states,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
@staticmethod
def resize_bart_abs_pos_emb(weight: torch.Tensor, max_length: int) -> torch.Tensor:
"""
Resize position embeddings
Truncate if sequence length of MBart backbone is greater than given max_length,
else interpolate to max_length
"""
if weight.shape[0] > max_length:
weight = weight[:max_length, ...]
else:
weight = (
F.interpolate(
weight.permute(1, 0).unsqueeze(0),
size=max_length,
mode="linear",
align_corners=False,
)
.squeeze(0)
.permute(1, 0)
)
return weight
class DonutConfig(PretrainedConfig):
def __init__(
self,
decoder_layer: int = 10,
max_position_embeddings: int = None,
max_length: int = 4096,
hidden_dimension: int = 1024,
**kwargs,
):
super().__init__()
self.decoder_layer = decoder_layer
self.max_position_embeddings = max_length if max_position_embeddings is None else max_position_embeddings
self.max_length = max_length
self.hidden_dimension = hidden_dimension
class RunningVarTorch:
def __init__(self, L=15, norm=False):
self.values = None
self.L = L
self.norm = norm
def push(self, x: torch.Tensor):
assert x.dim() == 1
if self.values is None:
self.values = x[:, None]
elif self.values.shape[1] < self.L:
self.values = torch.cat((self.values, x[:, None]), 1)
else:
self.values = torch.cat((self.values[:, 1:], x[:, None]), 1)
def variance(self):
if self.values is None:
return
if self.norm:
return torch.var(self.values, 1) / self.values.shape[1]
else:
return torch.var(self.values, 1)
class StoppingCriteriaScores(StoppingCriteria):
def __init__(self, threshold: float = 0.015, window_size: int = 200):
super().__init__()
self.threshold = threshold
self.vars = RunningVarTorch(norm=True)
self.varvars = RunningVarTorch(L=window_size)
self.stop_inds = defaultdict(int)
self.stopped = defaultdict(bool)
self.size = 0
self.window_size = window_size
@torch.no_grad()
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
last_scores = scores[-1]
self.vars.push(last_scores.max(1)[0].float().cpu())
self.varvars.push(self.vars.variance())
self.size += 1
if self.size < self.window_size:
return False
varvar = self.varvars.variance()
for b in range(len(last_scores)):
if varvar[b] < self.threshold:
if self.stop_inds[b] > 0 and not self.stopped[b]:
self.stopped[b] = self.stop_inds[b] >= self.size
else:
self.stop_inds[b] = int(min(max(self.size, 1) * 1.15 + 150 + self.window_size, 4095))
else:
self.stop_inds[b] = 0
self.stopped[b] = False
return all(self.stopped.values()) and len(self.stopped) > 0
def batch(l, b=15):
subs = []
for i in range(len(l) - b):
subs.append(l[i : i + b])
return subs
def subdiv(l, b=10):
subs = []
for i in range(len(l) - b):
subs.append(l[: i + b])
return subs
class DonutModel(PreTrainedModel):
config_class = DonutConfig
base_model_prefix = "donut"
def __init__(self, config: DonutConfig, vision_tower=None, tokenizer=None):
super().__init__(config)
self.config = config
self.tokenizer = tokenizer
self.vpm = vision_tower
# build language model
self.llm = BARTDecoder(
tokenizer=tokenizer,
decoder_layer=self.config.decoder_layer,
max_position_embeddings=self.config.max_position_embeddings,
hidden_dimension=self.config.hidden_dimension,
)
self.ids_to_tokens = {id: content for content, id in self.llm.tokenizer.vocab.items()}
def get_input_embeddings(self, tensor):
return self.llm.model.get_input_embeddings()(tensor)
def forward(
self,
inputs: dict,
):
image_tensors = inputs["pixel_values"]
input_ids = inputs["input_ids"].contiguous()
attention_mask = inputs["attention_mask"]
labels = inputs["labels"].contiguous()
encoder_outputs = self.vpm(
image_tensors,
text_embedding=self.llm.model.get_input_embeddings()(input_ids),
)
decoder_outputs = self.llm(
input_ids=input_ids,
encoder_hidden_states=encoder_outputs,
attention_mask=attention_mask,
labels=labels,
)
return decoder_outputs
def get_hidden_states_during_inference(
self,
prompt_ids: torch.Tensor,
image: Image.Image = None,
image_tensors: Optional[torch.Tensor] = None,
):
if image_tensors is None:
image_tensors = self.vpm.prepare_input(image).unsqueeze(0)
if self.device.type != "mps":
image_tensors = image_tensors.to(next(self.parameters()).dtype)
image_tensors = image_tensors.to(self.device)
prompt_ids = prompt_ids.to(self.device)
all_hidden_states = self.vpm.forward_features(
image_tensors, text_embedding=self.get_input_embeddings(prompt_ids)
)
return all_hidden_states
def get_attn_weights_during_inference(
self,
prompt_ids: torch.Tensor,
image: Image.Image = None,
image_tensors: Optional[torch.Tensor] = None,
):
if image_tensors is None:
image_tensors = self.vpm.prepare_input(image).unsqueeze(0)
if self.device.type != "mps":
image_tensors = image_tensors.to(next(self.parameters()).dtype)
image_tensors = image_tensors.to(self.device)
prompt_ids = prompt_ids.to(self.device)
last_attn_score = self.vpm.get_last_layer_cross_attn_score(
image_tensors, text_embedding=self.get_input_embeddings(prompt_ids)
)
return last_attn_score
def inference(
self,
prompt_ids: torch.Tensor,
image: Image.Image = None,
image_tensors: Optional[torch.Tensor] = None,
return_attentions: bool = False,
early_stopping: bool = True,
):
"""
Generate a token sequence in an auto-regressive manner.
Args:
image: input document image (PIL.Image)
image_tensors: (1, num_channels, height, width)
convert prompt to tensor if image_tensor is not fed
"""
output = {
"predictions": list(),
"sequences": list(),
"repeats": list(),
"repetitions": list(),
}
if image is None and image_tensors is None:
logging.warn("Image not found")
return output
if image_tensors is None:
image_tensors = self.vpm.prepare_input(image).unsqueeze(0)
if self.device.type != "mps":
image_tensors = image_tensors.to(next(self.parameters()).dtype)
image_tensors = image_tensors.to(self.device)
prompt_ids = prompt_ids.to(self.device)
last_hidden_state = self.vpm(image_tensors, text_embedding=self.get_input_embeddings(prompt_ids))
encoder_outputs = ModelOutput(last_hidden_state=last_hidden_state, attentions=None)
if len(encoder_outputs.last_hidden_state.size()) == 1:
encoder_outputs.last_hidden_state = encoder_outputs.last_hidden_state.unsqueeze(0)
# get decoder output
decoder_output = self.llm.model.generate(
input_ids=prompt_ids,
encoder_outputs=encoder_outputs,
min_length=1,
max_length=self.config.max_length,
pad_token_id=self.llm.tokenizer.pad_token_id,
eos_token_id=self.llm.tokenizer.eos_token_id,
use_cache=True,
return_dict_in_generate=True,
output_scores=True,
output_attentions=return_attentions,
do_sample=False,
num_beams=1,
stopping_criteria=StoppingCriteriaList([StoppingCriteriaScores()] if early_stopping else []),
)
output["repetitions"] = decoder_output.sequences.clone()
output["sequences"] = decoder_output.sequences.clone()
output["scores"] = torch.stack(decoder_output.scores, 1).softmax(-1).cpu().max(-1)[0]
output["repetitions"] = self.llm.tokenizer.batch_decode(output["repetitions"], skip_special_tokens=False)
return output
|