Test_Voice / voice_chat /gemma3n_inference.py
raksa-the-wildcats
Add all project files with proper LFS tracking
ee78b3d
raw
history blame
11.3 kB
import os
import tempfile
import torch
import librosa
import numpy as np
from transformers import AutoModelForImageTextToText, AutoProcessor
from huggingface_hub import login
import io
from pydub import AudioSegment
import base64
import traceback
class Gemma3nInference:
def __init__(self, device='cuda:0'):
self.device = device
# Login to Hugging Face using token from environment
hf_token = os.getenv('HF_TOKEN')
if hf_token:
login(token=hf_token)
else:
print("Warning: HF_TOKEN not found in environment variables")
print("Loading Gemma 3n model...")
try:
# Try loading Gemma 3n E2B (2B effective params) using the correct class
model_name = "google/gemma-3n-E2B-it"
self.model = AutoModelForImageTextToText.from_pretrained(
model_name,
torch_dtype="auto", # Let it auto-detect the best dtype
device_map="auto",
trust_remote_code=True
)
self.processor = AutoProcessor.from_pretrained(model_name)
print(f"Gemma 3n E2B model loaded successfully on device: {self.model.device}")
print(f"Model dtype: {self.model.dtype}")
except Exception as e:
print(f"Error loading Gemma 3n model: {e}")
print("Trying alternative loading method...")
try:
# Try loading without vision components initially
from transformers import AutoConfig
config = AutoConfig.from_pretrained(
model_name,
trust_remote_code=True
)
# Disable vision tower if causing issues
if hasattr(config, 'vision_config'):
print("Attempting to load without problematic vision config...")
self.model = AutoModelForImageTextToText.from_pretrained(
model_name,
torch_dtype="auto",
trust_remote_code=True,
ignore_mismatched_sizes=True
).to(self.device)
self.processor = AutoProcessor.from_pretrained(
model_name,
trust_remote_code=True
)
print("Gemma 3n E2B model loaded with alternative method")
except Exception as e2:
print(f"Alternative loading also failed: {e2}")
raise e2
def preprocess_audio(self, audio_path):
"""Convert audio to Gemma 3n format: 16kHz mono float32 in range [-1, 1]"""
try:
# Load audio file
audio, sr = librosa.load(audio_path, sr=16000, mono=True)
# Ensure audio is in range [-1, 1]
if audio.max() > 1.0 or audio.min() < -1.0:
audio = audio / max(abs(audio.max()), abs(audio.min()))
# Limit to 30 seconds as recommended
max_samples = 30 * 16000
if len(audio) > max_samples:
audio = audio[:max_samples]
return audio.astype(np.float32)
except Exception as e:
print(f"Error preprocessing audio: {e}")
raise
def create_multimodal_input(self, audio_path, text_prompt="Respond naturally to this audio input"):
"""Create multimodal input for Gemma 3n using the same format as the notebook"""
try:
# Preprocess audio
audio_array = self.preprocess_audio(audio_path)
# Create multimodal message format exactly like the notebook
message = {
"role": "user",
"content": [
{"type": "audio", "audio": audio_path}, # Use path instead of array
{"type": "text", "text": text_prompt}
]
}
# Process with Gemma 3n processor using the notebook approach
inputs = self.processor.apply_chat_template(
[message], # History is a list
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
)
return inputs.to(self.device, dtype=self.model.dtype)
except Exception as e:
print(f"Error creating multimodal input: {e}")
traceback.print_exc()
raise
def generate_response(self, audio_path, max_new_tokens=256):
"""Generate text response from audio input using notebook approach"""
try:
# Create multimodal input
inputs = self.create_multimodal_input(audio_path)
input_len = inputs["input_ids"].shape[-1]
# Generate response exactly like the notebook
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=max_new_tokens,
disable_compile=True
)
# Decode response exactly like the notebook
text = self.processor.batch_decode(
outputs[:, input_len:],
skip_special_tokens=True,
clean_up_tokenization_spaces=True
)
return text[0].strip() if text else "No response generated"
except Exception as e:
print(f"Error generating response: {e}")
traceback.print_exc()
return f"Error: {str(e)}"
def stream_response(self, audio_path, max_new_tokens=512, temperature=0.9):
"""Generate streaming text response from audio input"""
try:
# Create multimodal input
inputs = self.create_multimodal_input(audio_path)
# Generate streaming response
with torch.no_grad():
# Use the model's generate method with streaming
streamer = self.processor.tokenizer
outputs = self.model.generate(
**inputs,
max_new_tokens=max_new_tokens,
temperature=temperature,
do_sample=True,
pad_token_id=self.processor.tokenizer.eos_token_id,
eos_token_id=self.processor.tokenizer.eos_token_id,
return_dict_in_generate=True,
output_scores=True
)
# Decode the full response
response = self.processor.tokenizer.decode(
outputs.sequences[0][inputs['input_ids'].shape[1]:],
skip_special_tokens=True
)
return response.strip()
except Exception as e:
print(f"Error in streaming response: {e}")
traceback.print_exc()
return f"Error: {str(e)}"
def text_to_speech_simple(self, text):
"""Convert text to speech using gTTS"""
try:
from gtts import gTTS
# Create TTS object
tts = gTTS(text=text, lang='en', slow=False)
# Save to temporary file
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as tmp_file:
tts.save(tmp_file.name)
# Convert MP3 to WAV format that the system expects
audio_segment = AudioSegment.from_mp3(tmp_file.name)
# Convert to expected format (24kHz, mono, 16-bit)
audio_segment = audio_segment.set_frame_rate(24000)
audio_segment = audio_segment.set_channels(1)
audio_segment = audio_segment.set_sample_width(2)
# Export to WAV bytes
audio_buffer = io.BytesIO()
audio_segment.export(audio_buffer, format="wav")
# Clean up temp file
os.unlink(tmp_file.name)
return audio_buffer.getvalue()
except ImportError:
print("gTTS not available, falling back to silence")
# Fallback to silence if gTTS not installed
duration_seconds = max(1, len(text) / 20)
sample_rate = 24000
samples = int(duration_seconds * sample_rate)
audio_data = np.zeros(samples, dtype=np.int16)
audio_segment = AudioSegment(
audio_data.tobytes(),
frame_rate=sample_rate,
sample_width=2,
channels=1
)
audio_buffer = io.BytesIO()
audio_segment.export(audio_buffer, format="wav")
return audio_buffer.getvalue()
except Exception as e:
print(f"Error in TTS: {e}")
# Return minimal audio data on error
return b'\x00' * 1024
def process_audio_stream(self, audio_bytes):
"""Process audio stream and return response audio stream"""
try:
# Decode base64 audio
audio_data = base64.b64decode(audio_bytes)
# Save to temporary file
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
f.write(audio_data)
temp_audio_path = f.name
try:
# Generate text response
text_response = self.generate_response(temp_audio_path)
print(f"Generated response: {text_response}")
# Convert to speech (placeholder)
audio_response = self.text_to_speech_simple(text_response)
return audio_response
finally:
# Clean up temp file
if os.path.exists(temp_audio_path):
os.unlink(temp_audio_path)
except Exception as e:
print(f"Error processing audio stream: {e}")
traceback.print_exc()
# Return minimal audio data on error
return b'\x00' * 1024
def warm_up(self):
"""Warm up the model"""
try:
print("Warming up Gemma 3n model...")
# Create a short dummy audio
dummy_audio = np.zeros(16000, dtype=np.float32) # 1 second of silence
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
# Save dummy audio
import soundfile as sf
sf.write(f.name, dummy_audio, 16000)
# Generate a quick response
response = self.generate_response(f.name, max_new_tokens=10)
print(f"Warm-up response: {response}")
# Clean up
os.unlink(f.name)
print("Gemma 3n warm-up complete")
except Exception as e:
print(f"Error during warm-up: {e}")
# Don't fail startup on warm-up errors
pass