ragtim-bot / app.py
raktimhugging's picture
Update app.py
f3d6f52 verified
raw
history blame
17.5 kB
import gradio as gr
import json
import numpy as np
from transformers import pipeline, AutoTokenizer, AutoModel
import torch
import os
from typing import List, Dict, Any
import time
import requests
import re
# Configure device
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
class RAGtimBot:
def __init__(self):
self.embedder = None
self.knowledge_base = []
self.embeddings = []
self.initialize_models()
self.load_markdown_knowledge_base()
def initialize_models(self):
"""Initialize the embedding model"""
try:
print("Loading embedding model...")
self.embedder = pipeline(
'feature-extraction',
'sentence-transformers/all-MiniLM-L6-v2',
device=0 if device == "cuda" else -1
)
print("βœ… Embedding model loaded successfully")
except Exception as e:
print(f"❌ Error loading embedding model: {e}")
raise e
def load_markdown_knowledge_base(self):
"""Load knowledge base from markdown files"""
print("Loading knowledge base from markdown files...")
# Reset knowledge base
self.knowledge_base = []
# Load all markdown files
markdown_files = [
'about.md',
'research_details.md',
'publications_detailed.md',
'skills_expertise.md',
'experience_detailed.md',
'statistics.md'
]
for filename in markdown_files:
try:
if os.path.exists(filename):
with open(filename, 'r', encoding='utf-8') as f:
content = f.read()
self.process_markdown_file(content, filename)
print(f"βœ… Loaded {filename}")
else:
print(f"⚠️ File not found: {filename}")
except Exception as e:
print(f"❌ Error loading {filename}: {e}")
# Generate embeddings for knowledge base
print("Generating embeddings for knowledge base...")
self.embeddings = []
for i, doc in enumerate(self.knowledge_base):
try:
# Truncate content to avoid token limit issues
content = doc["content"][:500] # Limit to 500 characters
embedding = self.embedder(content, return_tensors="pt")
# Convert to numpy and flatten
embedding_np = embedding[0].mean(dim=0).detach().cpu().numpy()
self.embeddings.append(embedding_np)
except Exception as e:
print(f"Error generating embedding for doc {doc['id']}: {e}")
# Fallback to zero embedding
self.embeddings.append(np.zeros(384))
print(f"βœ… Knowledge base loaded with {len(self.knowledge_base)} documents")
def process_markdown_file(self, content: str, filename: str):
"""Process a markdown file and extract sections"""
# Determine file type and priority
file_type_map = {
'about.md': ('about', 10),
'research_details.md': ('research', 9),
'publications_detailed.md': ('publications', 8),
'skills_expertise.md': ('skills', 7),
'experience_detailed.md': ('experience', 8),
'statistics.md': ('statistics', 9)
}
file_type, priority = file_type_map.get(filename, ('general', 5))
# Split content into sections
sections = self.split_markdown_into_sections(content)
for section in sections:
if len(section['content'].strip()) > 100: # Only process substantial content
doc = {
"id": f"{filename}_{section['title']}_{len(self.knowledge_base)}",
"content": section['content'],
"metadata": {
"type": file_type,
"priority": priority,
"section": section['title'],
"source": filename
}
}
self.knowledge_base.append(doc)
def split_markdown_into_sections(self, content: str) -> List[Dict[str, str]]:
"""Split markdown content into sections based on headers"""
sections = []
lines = content.split('\n')
current_section = {'title': 'Introduction', 'content': ''}
for line in lines:
# Check if line is a header
if line.startswith('#'):
# Save previous section if it has content
if current_section['content'].strip():
sections.append(current_section.copy())
# Start new section
header_level = len(line) - len(line.lstrip('#'))
title = line.lstrip('#').strip()
current_section = {
'title': title,
'content': line + '\n'
}
else:
current_section['content'] += line + '\n'
# Add the last section
if current_section['content'].strip():
sections.append(current_section)
return sections
def cosine_similarity(self, a, b):
"""Calculate cosine similarity between two vectors"""
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
def search_knowledge_base(self, query: str, top_k: int = 5) -> List[Dict]:
"""Search the knowledge base using semantic similarity"""
try:
# Generate query embedding
query_embedding = self.embedder(query[:500], return_tensors="pt") # Truncate query too
query_vector = query_embedding[0].mean(dim=0).detach().cpu().numpy()
# Calculate similarities
similarities = []
for i, doc_embedding in enumerate(self.embeddings):
similarity = self.cosine_similarity(query_vector, doc_embedding)
similarities.append({
"id": self.knowledge_base[i]["id"],
"content": self.knowledge_base[i]["content"],
"metadata": self.knowledge_base[i]["metadata"],
"score": float(similarity),
"index": i
})
# Sort by similarity and priority
similarities.sort(key=lambda x: (x["score"], x["metadata"]["priority"]), reverse=True)
return similarities[:top_k]
except Exception as e:
print(f"Error in search: {e}")
# Fallback to keyword search
return self.keyword_search(query, top_k)
def keyword_search(self, query: str, top_k: int = 5) -> List[Dict]:
"""Fallback keyword search"""
query_terms = query.lower().split()
results = []
for i, doc in enumerate(self.knowledge_base):
content_lower = doc["content"].lower()
score = sum(content_lower.count(term) for term in query_terms)
# Add priority boost
priority_boost = doc["metadata"]["priority"] / 10
final_score = score + priority_boost
if score > 0:
results.append({
"id": doc["id"],
"content": doc["content"],
"metadata": doc["metadata"],
"score": final_score,
"index": i
})
results.sort(key=lambda x: x["score"], reverse=True)
return results[:top_k]
# Initialize the bot
print("Initializing RAGtim Bot with markdown knowledge base...")
bot = RAGtimBot()
def search_only_api(query, top_k=5):
"""API endpoint for search-only functionality"""
try:
results = bot.search_knowledge_base(query, top_k)
return {
"results": results,
"query": query,
"top_k": top_k,
"search_type": "semantic",
"total_documents": len(bot.knowledge_base)
}
except Exception as e:
print(f"Error in search API: {e}")
return {"error": str(e), "results": []}
def get_stats_api():
"""API endpoint for knowledge base statistics"""
# Calculate document distribution by type
doc_types = {}
sections_by_file = {}
for doc in bot.knowledge_base:
doc_type = doc["metadata"]["type"]
source_file = doc["metadata"]["source"]
doc_types[doc_type] = doc_types.get(doc_type, 0) + 1
sections_by_file[source_file] = sections_by_file.get(source_file, 0) + 1
return {
"total_documents": len(bot.knowledge_base),
"document_types": doc_types,
"sections_by_file": sections_by_file,
"model_name": "sentence-transformers/all-MiniLM-L6-v2",
"embedding_dimension": 384,
"search_capabilities": ["Semantic Search", "GPU Accelerated", "Transformer Embeddings", "Markdown Knowledge Base"],
"backend_type": "Hugging Face Space",
"knowledge_sources": list(sections_by_file.keys())
}
def chat_interface(message, history):
"""Chat interface with markdown knowledge base"""
if not message.strip():
return "Please ask me something about Raktim Mondol! I have comprehensive information loaded from his complete portfolio markdown files."
try:
# Search knowledge base
search_results = bot.search_knowledge_base(message, top_k=6)
if search_results:
# Build comprehensive response
response_parts = []
response_parts.append(f"Based on my markdown knowledge base (found {len(search_results)} relevant sections):\n")
# Use the best match as primary response
best_match = search_results[0]
response_parts.append(f"**Primary Answer** (Relevance: {best_match['score']:.2f}):")
response_parts.append(f"Source: {best_match['metadata']['source']} - {best_match['metadata']['section']}")
response_parts.append(f"{best_match['content']}\n")
# Add additional context if available
if len(search_results) > 1:
response_parts.append("**Additional Context:**")
for i, result in enumerate(search_results[1:3], 1): # Show up to 2 additional results
section_info = f"{result['metadata']['source']} - {result['metadata']['section']}"
response_parts.append(f"{i}. {section_info} (Relevance: {result['score']:.2f})")
# Add a brief excerpt
excerpt = result['content'][:200] + "..." if len(result['content']) > 200 else result['content']
response_parts.append(f" {excerpt}\n")
response_parts.append("\n[Note: This response is generated from your complete markdown knowledge base. In hybrid mode, DeepSeek LLM would generate more natural responses using this context.]")
return "\n".join(response_parts)
else:
return "I don't have specific information about that topic in my markdown knowledge base. Could you please ask something else about Raktim Mondol?"
except Exception as e:
print(f"Error in chat interface: {e}")
return "I'm sorry, I encountered an error while processing your question. Please try again."
# Create Gradio interface
print("Creating Gradio interface...")
# Custom CSS for better styling
css = """
.gradio-container {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
.chat-message {
padding: 10px;
margin: 5px 0;
border-radius: 10px;
}
"""
# Create the main chat interface - UPDATED FOR GRADIO 5.34.0
with gr.Blocks(
title="πŸ€– RAGtim Bot - Markdown Knowledge Base",
css=css,
theme=gr.themes.Soft(
primary_hue="green",
secondary_hue="blue",
neutral_hue="slate"
)
) as chat_demo:
gr.Markdown(f"""
# πŸ€– RAGtim Bot - Markdown Knowledge Base
**Complete Markdown Knowledge Base**: This Hugging Face Space loads all markdown files from Raktim Mondol's portfolio with **{len(bot.knowledge_base)} knowledge sections**.
**Loaded Markdown Files:**
- πŸ“„ **about.md** - Personal information, contact details, professional summary
- πŸ”¬ **research_details.md** - Detailed research projects, methodologies, current work
- πŸ“š **publications_detailed.md** - Complete publication details, technical contributions
- πŸ’» **skills_expertise.md** - Comprehensive technical skills, tools, frameworks
- πŸ’Ό **experience_detailed.md** - Professional experience, teaching, research roles
- πŸ“Š **statistics.md** - Statistical methods, biostatistics expertise, methodologies
**Search Capabilities:**
- πŸ” Semantic similarity search using transformers
- πŸš€ GPU-accelerated embeddings with priority ranking
- πŸ“Š Relevance scoring across all markdown content
- 🎯 Section-level granular search within each file
**API Endpoints:**
- `/api/search` - Search across complete markdown knowledge base
- `/api/stats` - Detailed statistics about loaded content
**Ask me anything about Raktim Mondol:**
- Research projects, methodologies, and innovations
- Publications with technical details and impact
- Technical skills, programming expertise, and tools
- Educational background and academic achievements
- Professional experience and teaching roles
- Statistical methods and biostatistics applications
- Awards, recognition, and professional development
- Contact information and collaboration opportunities
**Note**: This demo shows search results from the complete markdown knowledge base. In hybrid mode, these results are passed to DeepSeek LLM for natural response generation.
""")
chatbot = gr.Chatbot(
height=600,
show_label=False,
container=True,
type="messages"
)
with gr.Row():
msg = gr.Textbox(
placeholder="Ask me anything about Raktim Mondol's research, skills, experience, publications...",
container=False,
scale=7,
show_label=False
)
submit_btn = gr.Button("Search Knowledge Base", scale=1)
# Example buttons
with gr.Row():
examples = [
"What is Raktim's research about?",
"Tell me about BioFusionNet in detail",
"What are his LLM and RAG expertise?",
"Describe his statistical methods and biostatistics work"
]
for example in examples:
gr.Button(example, size="sm").click(
lambda x=example: x, outputs=msg
)
def respond(message, history):
if not message.strip():
return history, ""
# Add user message to history
history.append({"role": "user", "content": message})
# Get bot response
bot_response = chat_interface(message, history)
# Add bot response to history
history.append({"role": "assistant", "content": bot_response})
return history, ""
submit_btn.click(respond, [msg, chatbot], [chatbot, msg])
msg.submit(respond, [msg, chatbot], [chatbot, msg])
# Create API interface for search-only functionality
with gr.Blocks(title="πŸ” Search API") as search_demo:
gr.Markdown("# πŸ” Markdown Knowledge Base Search API")
gr.Markdown("Direct access to semantic search across all loaded markdown files")
with gr.Row():
search_input = gr.Textbox(
label="Search Query",
placeholder="Enter your search query about Raktim Mondol..."
)
top_k_slider = gr.Slider(
minimum=1,
maximum=15,
value=5,
step=1,
label="Top K Results"
)
search_output = gr.JSON(label="Markdown Knowledge Base Search Results")
search_btn = gr.Button("Search")
search_btn.click(
search_only_api,
inputs=[search_input, top_k_slider],
outputs=search_output
)
# Create stats interface
with gr.Blocks(title="πŸ“Š Stats API") as stats_demo:
gr.Markdown("# πŸ“Š Knowledge Base Stats")
gr.Markdown("Detailed statistics about the loaded markdown knowledge base")
stats_output = gr.JSON(label="Markdown Knowledge Base Statistics")
stats_btn = gr.Button("Get Statistics")
stats_btn.click(
get_stats_api,
inputs=[],
outputs=stats_output
)
# Combine interfaces using TabbedInterface
demo = gr.TabbedInterface(
[chat_demo, search_demo, stats_demo],
["πŸ’¬ Markdown Chat", "πŸ” Search API", "πŸ“Š Stats API"],
title="πŸ€– RAGtim Bot - Complete Markdown Knowledge Base"
)
if __name__ == "__main__":
print("πŸš€ Launching RAGtim Bot with Markdown Knowledge Base...")
print(f"πŸ“š Loaded {len(bot.knowledge_base)} sections from markdown files")
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
)