Spaces:
Build error
Build error
File size: 4,162 Bytes
053a53d c0b2a4d d3d92c6 053a53d c0b2a4d 053a53d da06f67 c0b2a4d 053a53d e3b4042 c0b2a4d 053a53d c0b2a4d 053a53d ebae726 c0b2a4d 183e91e c0b2a4d da06f67 c0b2a4d 053a53d 6a78ac0 6ec351d 053a53d d3d92c6 c0b2a4d d3d92c6 da06f67 c0b2a4d ebae726 053a53d ebae726 053a53d c0b2a4d 1c9be4e c0b2a4d d3d92c6 c0b2a4d ebae726 c0b2a4d d3d92c6 c0b2a4d 053a53d c0b2a4d 053a53d c0b2a4d 309ee8b c0b2a4d f30a153 c0b2a4d e3b4042 c0b2a4d 053a53d c0b2a4d 053a53d e3b4042 c0b2a4d da06f67 c0b2a4d 053a53d e3b4042 c0b2a4d 053a53d c0b2a4d da06f67 c0b2a4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
import dspy, gradio as gr
import chromadb
import fitz # PyMuPDF
from sentence_transformers import SentenceTransformer
import json
from dspy import Example, MIPROv2, Evaluate, evaluate
# إعداد نموذج مفتوح المصدر
dspy.settings.configure(lm=dspy.LM("mistralai/Mistral-7B-Instruct-v0.2"))
# إعداد Chroma بطريقة حديثة
client = chromadb.PersistentClient(path="./chroma_db")
col = client.get_or_create_collection(name="arabic_docs")
# نموذج توليد embeddings يدعم العربية
embedder = SentenceTransformer("sentence-transformers/LaBSE")
# تقطيع النصوص من PDF
def process_pdf(pdf_bytes):
doc = fitz.open(stream=pdf_bytes, filetype="pdf")
texts = []
for p in doc:
text = p.get_text()
for chunk in text.split("\n\n"):
if len(chunk.strip()) > 50:
texts.append(chunk.strip())
return texts
# إدخال النصوص في قاعدة Chroma
def ingest(pdf_file):
if hasattr(pdf_file, "read"):
pdf_bytes = pdf_file.read()
else:
with open(pdf_file.name, "rb") as f:
pdf_bytes = f.read()
texts = process_pdf(pdf_bytes)
embeddings = embedder.encode(texts, show_progress_bar=True)
for i, (chunk, emb) in enumerate(zip(texts, embeddings)):
col.add(ids=[f"chunk_{i}"], embeddings=[emb.tolist()], metadatas=[{"text": chunk}])
return f"✅ تمت إضافة {len(texts)} مقطعاً."
# استرجاع السياق من Chroma
def retrieve_context(question):
query_embedding = embedder.encode([question])[0] # تحويل السؤال إلى embedding
results = col.query(query_embeddings=[query_embedding], n_results=3)
context_list = [m["text"] for m in results["metadatas"][0]] # استخراج السياق من النتائج
return "\n\n".join(context_list)
# توقيع RAG
class RagSig(dspy.Signature):
question: str = dspy.InputField()
context: str = dspy.InputField()
answer: str = dspy.OutputField()
# وحدة DSPy
class RagMod(dspy.Module):
def __init__(self):
super().__init__()
self.predictor = dspy.Predict(RagSig)
def forward(self, question):
context = retrieve_context(question)
return self.predictor(question=question, context=context)
model = RagMod()
# توليد إجابة
def answer(question):
out = model(question)
return out.answer
# تحميل بيانات تدريب/تقييم
def load_dataset(path):
with open(path, "r", encoding="utf-8") as f:
return [Example(**json.loads(l)).with_inputs("question") for l in f]
# تحسين النموذج باستخدام MIPROv2
def optimize(train_file, val_file):
global model
trainset = load_dataset(train_file.name)
valset = load_dataset(val_file.name)
tp = MIPROv2(metric=evaluate.answer_exact_match, auto="light", num_threads=4)
optimized = tp.compile(model, trainset=trainset, valset=valset)
model = optimized
return "✅ تم تحسين النموذج!"
# واجهة Gradio
with gr.Blocks() as demo:
gr.Markdown("## 🧠 نظام RAG عربي باستخدام DSPy + نموذج مفتوح المصدر")
with gr.Tab("📥 تحميل وتخزين"):
pdf_input = gr.File(label="ارفع ملف PDF", type="file")
ingest_btn = gr.Button("إضافة إلى قاعدة البيانات")
ingest_out = gr.Textbox(label="نتيجة الإضافة")
ingest_btn.click(ingest, inputs=pdf_input, outputs=ingest_out)
with gr.Tab("❓ سؤال"):
q = gr.Textbox(label="اكتب سؤالك بالعربية")
answer_btn = gr.Button("احصل على الإجابة")
out = gr.Textbox(label="الإجابة")
answer_btn.click(answer, inputs=q, outputs=out)
with gr.Tab("⚙️ تحسين النموذج"):
train_file = gr.File(label="trainset.jsonl")
val_file = gr.File(label="valset.jsonl")
opt_btn = gr.Button("ابدأ التحسين")
result = gr.Textbox(label="نتيجة التحسين")
opt_btn.click(optimize, inputs=[train_file, val_file], outputs=result)
demo.launch()
|