Spaces:
Build error
Build error
File size: 3,953 Bytes
26c4c4f c0b2a4d d3d92c6 053a53d c0b2a4d 26c4c4f da06f67 c0b2a4d 26c4c4f e3b4042 c0b2a4d 26c4c4f c0b2a4d 053a53d ebae726 c0b2a4d 26c4c4f c0b2a4d da06f67 c0b2a4d 26c4c4f 6a78ac0 26c4c4f d3d92c6 c0b2a4d d3d92c6 da06f67 c0b2a4d 26c4c4f 053a53d 26c4c4f 053a53d ebae726 26c4c4f c0b2a4d 1c9be4e c0b2a4d 26c4c4f c0b2a4d ebae726 c0b2a4d 26c4c4f c0b2a4d 26c4c4f c0b2a4d 26c4c4f c0b2a4d 309ee8b c0b2a4d f30a153 c0b2a4d 26c4c4f e3b4042 c0b2a4d 26c4c4f c0b2a4d 053a53d e3b4042 c0b2a4d da06f67 c0b2a4d 053a53d e3b4042 c0b2a4d 053a53d c0b2a4d da06f67 c0b2a4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
import dspy
import gradio as gr
import chromadb
import fitz # PyMuPDF
from sentence_transformers import SentenceTransformer
import json
from dspy import Example, MIPROv2, Evaluate, evaluate
# إعداد نموذج اللغة
dspy.settings.configure(lm=dspy.LM("mistralai/Mistral-7B-Instruct-v0.2"))
# إعداد قاعدة Chroma
client = chromadb.PersistentClient(path="./chroma_db")
col = client.get_or_create_collection(name="arabic_docs")
# نموذج embeddings يدعم العربية
embedder = SentenceTransformer("sentence-transformers/LaBSE")
# تقطيع النصوص من PDF
def process_pdf(pdf_bytes):
doc = fitz.open(stream=pdf_bytes, filetype="pdf")
texts = []
for page in doc:
text = page.get_text()
for chunk in text.split("\n\n"):
if len(chunk.strip()) > 50:
texts.append(chunk.strip())
return texts
# إدخال البيانات في Chroma
def ingest(pdf_file):
pdf_bytes = pdf_file # لأننا استخدمنا type='binary'
texts = process_pdf(pdf_bytes)
embeddings = embedder.encode(texts, show_progress_bar=True)
for i, (chunk, emb) in enumerate(zip(texts, embeddings)):
col.add(ids=[f"chunk_{i}"], embeddings=[emb.tolist()], metadatas=[{"text": chunk}])
return f"✅ تمت إضافة {len(texts)} مقطعاً."
# استرجاع السياق
def retrieve_context(question):
embedding = embedder.encode([question])[0]
results = col.query(query_embeddings=[embedding.tolist()], n_results=3)
context_list = [m["text"] for m in results["metadatas"][0]]
return "\n\n".join(context_list)
# توقيع وحدة RAG
class RagSig(dspy.Signature):
question: str = dspy.InputField()
context: str = dspy.InputField()
answer: str = dspy.OutputField()
# وحدة RAG
class RagMod(dspy.Module):
def __init__(self):
super().__init__()
self.predictor = dspy.Predict(RagSig)
def forward(self, question):
context = retrieve_context(question)
return self.predictor(question=question, context=context)
model = RagMod()
# توليد الإجابة
def answer(question):
out = model(question)
return out.answer
# تحميل مجموعة بيانات التدريب/التحقق
def load_dataset(path):
with open(path, "r", encoding="utf-8") as f:
return [Example(**json.loads(l)).with_inputs("question") for l in f]
# تحسين النموذج
def optimize(train_file, val_file):
global model
trainset = load_dataset(train_file.name)
valset = load_dataset(val_file.name)
tp = MIPROv2(metric=evaluate.answer_exact_match, auto="light", num_threads=4)
optimized = tp.compile(model, trainset=trainset, valset=valset)
model = optimized
return "✅ تم تحسين النموذج!"
# واجهة Gradio
with gr.Blocks() as demo:
gr.Markdown("## 🧠 نظام RAG عربي باستخدام DSPy + ChromaDB + Mistral")
with gr.Tab("📥 تحميل وتخزين"):
pdf_input = gr.File(label="ارفع ملف PDF", type="binary") # ← هنا التعديل
ingest_btn = gr.Button("إضافة إلى قاعدة البيانات")
ingest_out = gr.Textbox(label="نتيجة الإضافة")
ingest_btn.click(ingest, inputs=pdf_input, outputs=ingest_out)
with gr.Tab("❓ سؤال"):
q = gr.Textbox(label="اكتب سؤالك بالعربية")
answer_btn = gr.Button("احصل على الإجابة")
out = gr.Textbox(label="الإجابة")
answer_btn.click(answer, inputs=q, outputs=out)
with gr.Tab("⚙️ تحسين النموذج"):
train_file = gr.File(label="trainset.jsonl")
val_file = gr.File(label="valset.jsonl")
opt_btn = gr.Button("ابدأ التحسين")
result = gr.Textbox(label="نتيجة التحسين")
opt_btn.click(optimize, inputs=[train_file, val_file], outputs=result)
demo.launch()
|