Spaces:
Sleeping
Sleeping
import gradio as gr | |
from langchain_community.vectorstores import Chroma | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain.chains import RetrievalQA | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.document_loaders import PyPDFLoader | |
import os | |
import shutil | |
CHROMA_PATH = "chroma_db" | |
EMBED_MODEL = "sentence-transformers/all-MiniLM-L6-v2" | |
def load_and_prepare_file(file_path): | |
# تنظيف المجلد القديم | |
if os.path.exists(CHROMA_PATH): | |
shutil.rmtree(CHROMA_PATH) | |
# تحميل وتقطيع النص | |
loader = PyPDFLoader(file_path) | |
pages = loader.load_and_split() | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) | |
chunks = text_splitter.split_documents(pages) | |
# إنشاء قاعدة بيانات المتجهات | |
embedding_function = HuggingFaceEmbeddings(model_name=EMBED_MODEL) | |
vectordb = Chroma.from_documents(chunks, embedding_function, persist_directory=CHROMA_PATH) | |
vectordb.persist() | |
return "✅ تم تجهيز الملف بنجاح، يمكنك الآن طرح الأسئلة." | |
def answer_question(question): | |
embedding_function = HuggingFaceEmbeddings(model_name=EMBED_MODEL) | |
vectordb = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function) | |
retriever = vectordb.as_retriever() | |
qa = RetrievalQA.from_chain_type(llm="gpt2", retriever=retriever) | |
result = qa.run(question) | |
return result | |
with gr.Blocks() as demo: | |
gr.Markdown("### 📚 Smart PDF Assistant - مساعد PDF الذكي") | |
file_input = gr.File(label="📄 ارفع ملف PDF", type="filepath") | |
upload_output = gr.Textbox(label="نتيجة الرفع") | |
upload_button = gr.Button("تحميل ومعالجة الملف") | |
question_input = gr.Textbox(label="✍️ اكتب سؤالك هنا") | |
answer_output = gr.Textbox(label="🔎 الإجابة") | |
upload_button.click(load_and_prepare_file, inputs=file_input, outputs=upload_output) | |
question_input.submit(answer_question, inputs=question_input, outputs=answer_output) | |
demo.launch() | |