brain247v1 / app.py
ramysaidagieb's picture
Upload app.py
2d232ac verified
raw
history blame
2.15 kB
import gradio as gr
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.chains import RetrievalQA
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import PyPDFLoader
import os
import shutil
CHROMA_PATH = "chroma_db"
EMBED_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
def load_and_prepare_file(file_path):
# تنظيف المجلد القديم
if os.path.exists(CHROMA_PATH):
shutil.rmtree(CHROMA_PATH)
# تحميل وتقطيع النص
loader = PyPDFLoader(file_path)
pages = loader.load_and_split()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
chunks = text_splitter.split_documents(pages)
# إنشاء قاعدة بيانات المتجهات
embedding_function = HuggingFaceEmbeddings(model_name=EMBED_MODEL)
vectordb = Chroma.from_documents(chunks, embedding_function, persist_directory=CHROMA_PATH)
vectordb.persist()
return "✅ تم تجهيز الملف بنجاح، يمكنك الآن طرح الأسئلة."
def answer_question(question):
embedding_function = HuggingFaceEmbeddings(model_name=EMBED_MODEL)
vectordb = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
retriever = vectordb.as_retriever()
qa = RetrievalQA.from_chain_type(llm="gpt2", retriever=retriever)
result = qa.run(question)
return result
with gr.Blocks() as demo:
gr.Markdown("### 📚 Smart PDF Assistant - مساعد PDF الذكي")
file_input = gr.File(label="📄 ارفع ملف PDF", type="filepath")
upload_output = gr.Textbox(label="نتيجة الرفع")
upload_button = gr.Button("تحميل ومعالجة الملف")
question_input = gr.Textbox(label="✍️ اكتب سؤالك هنا")
answer_output = gr.Textbox(label="🔎 الإجابة")
upload_button.click(load_and_prepare_file, inputs=file_input, outputs=upload_output)
question_input.submit(answer_question, inputs=question_input, outputs=answer_output)
demo.launch()