Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from langchain_community.vectorstores import Chroma
|
3 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
4 |
+
from langchain.chains import RetrievalQA
|
5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain.document_loaders import PyPDFLoader
|
7 |
+
import os
|
8 |
+
import shutil
|
9 |
+
|
10 |
+
CHROMA_PATH = "chroma_db"
|
11 |
+
EMBED_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
|
12 |
+
|
13 |
+
def load_and_prepare_file(file_path):
|
14 |
+
# تنظيف المجلد القديم
|
15 |
+
if os.path.exists(CHROMA_PATH):
|
16 |
+
shutil.rmtree(CHROMA_PATH)
|
17 |
+
|
18 |
+
# تحميل وتقطيع النص
|
19 |
+
loader = PyPDFLoader(file_path)
|
20 |
+
pages = loader.load_and_split()
|
21 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
22 |
+
chunks = text_splitter.split_documents(pages)
|
23 |
+
|
24 |
+
# إنشاء قاعدة بيانات المتجهات
|
25 |
+
embedding_function = HuggingFaceEmbeddings(model_name=EMBED_MODEL)
|
26 |
+
vectordb = Chroma.from_documents(chunks, embedding_function, persist_directory=CHROMA_PATH)
|
27 |
+
vectordb.persist()
|
28 |
+
return "✅ تم تجهيز الملف بنجاح، يمكنك الآن طرح الأسئلة."
|
29 |
+
|
30 |
+
def answer_question(question):
|
31 |
+
embedding_function = HuggingFaceEmbeddings(model_name=EMBED_MODEL)
|
32 |
+
vectordb = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
|
33 |
+
retriever = vectordb.as_retriever()
|
34 |
+
qa = RetrievalQA.from_chain_type(llm="gpt2", retriever=retriever)
|
35 |
+
result = qa.run(question)
|
36 |
+
return result
|
37 |
+
|
38 |
+
with gr.Blocks() as demo:
|
39 |
+
gr.Markdown("### 📚 Smart PDF Assistant - مساعد PDF الذكي")
|
40 |
+
|
41 |
+
file_input = gr.File(label="📄 ارفع ملف PDF", type="filepath")
|
42 |
+
upload_output = gr.Textbox(label="نتيجة الرفع")
|
43 |
+
upload_button = gr.Button("تحميل ومعالجة الملف")
|
44 |
+
|
45 |
+
question_input = gr.Textbox(label="✍️ اكتب سؤالك هنا")
|
46 |
+
answer_output = gr.Textbox(label="🔎 الإجابة")
|
47 |
+
|
48 |
+
upload_button.click(load_and_prepare_file, inputs=file_input, outputs=upload_output)
|
49 |
+
question_input.submit(answer_question, inputs=question_input, outputs=answer_output)
|
50 |
+
|
51 |
+
demo.launch()
|