File size: 1,452 Bytes
faa82c9
c90b40e
 
 
 
 
 
 
6a5866e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c90b40e
 
faa82c9
6a5866e
 
b82ee60
6a5866e
 
c90b40e
6a5866e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer, AutoModelForCausalLM
import faiss
import numpy as np
from typing import List, Dict

class ArabicRAGSystem:
    def __init__(self):
        """Initialize with dependency-safe models"""
        # Verified working embedding model
        self.embedding_model = SentenceTransformer(
            "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
            device="cpu"
        )
        
        # Load Arabic LLM with safe tokenizer settings
        self.tokenizer = AutoTokenizer.from_pretrained(
            "aubmindlab/aragpt2-base",
            use_safetensors=True
        )
        self.llm = AutoModelForCausalLM.from_pretrained(
            "aubmindlab/aragpt2-base",
            use_safetensors=True,
            device_map="auto",
            torch_dtype="auto"
        )
        
        self.index = faiss.IndexFlatL2(384)  # Matching embedding dim

    def generate_answer(self, question: str, documents: List[Dict], 
                      top_k: int = 3, temperature: float = 0.7) -> tuple:
        """Optimized generation with memory safety"""
        # Convert documents to embeddings
        texts = [doc["text"] for doc in documents]
        embeddings = self.embedding_model.encode(texts, convert_to_numpy=True)
        self.index.add(embeddings)
        
        # Semantic search
        query_embedding = self.embedding_model