File size: 28,725 Bytes
f3929e1
 
 
ea3cae7
f3929e1
ea3cae7
8e2116d
1cb0feb
 
 
518eb83
 
0fa40c7
518eb83
08237b0
 
518eb83
08237b0
518eb83
08237b0
 
518eb83
 
 
08237b0
 
 
 
 
518eb83
 
 
08237b0
 
518eb83
 
 
08237b0
 
 
 
8e2116d
 
 
08237b0
 
 
518eb83
 
 
08237b0
 
 
 
 
 
 
 
 
518eb83
08237b0
 
 
 
518eb83
8e2116d
 
08237b0
 
518eb83
8e2116d
518eb83
08237b0
 
518eb83
08237b0
518eb83
08237b0
 
 
 
 
 
 
 
 
 
 
 
518eb83
 
ea3cae7
b224bbe
 
f3929e1
1cb0feb
 
84d48c8
25f3686
84d48c8
 
1ca2a2d
25f3686
 
1cb0feb
 
 
 
25f3686
 
 
1ca2a2d
25f3686
 
 
 
 
84d48c8
 
 
 
1cb0feb
1ca2a2d
1cb0feb
 
 
 
 
 
25f3686
 
 
 
 
 
1ca2a2d
25f3686
 
1ca2a2d
1cb0feb
 
 
 
 
 
 
 
25f3686
1cb0feb
 
 
84d48c8
 
 
 
 
 
 
 
 
 
 
 
1cb0feb
1ca2a2d
 
 
 
 
 
1cb0feb
 
1ca2a2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cb0feb
25f3686
 
 
 
 
 
1ca2a2d
25f3686
 
1ca2a2d
 
 
 
 
1cb0feb
 
1ca2a2d
1cb0feb
1ca2a2d
 
 
1cb0feb
 
 
 
 
 
1ca2a2d
1cb0feb
 
 
84d48c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cb0feb
 
 
 
84d48c8
 
08237b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cb0feb
d10946b
1cb0feb
08237b0
 
 
 
 
 
 
 
1cb0feb
d10946b
1cb0feb
08237b0
 
 
 
 
 
 
 
 
 
 
1cb0feb
d10946b
1cb0feb
08237b0
 
 
 
 
1cb0feb
d10946b
1cb0feb
08237b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25f3686
 
 
 
 
 
 
 
 
 
 
1cb0feb
08237b0
 
 
 
 
 
4ac7149
 
08237b0
 
 
 
 
 
8e2116d
08237b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e2116d
08237b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ac7149
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08237b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cb0feb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
import cv2
import numpy as np
import os
import gradio as gr
from PIL import Image
import tempfile
from typing import Union, Tuple
import json
import datetime
import pathlib

# Custom CSS for styling the interface
custom_css = """
.container {
    max-width: 1200px;
    margin: 0 auto;
}
/* Main styling */
.gradio-container {
    font-family: 'Roboto', 'Segoe UI', sans-serif;
    color: white;
}
/* Card styling */
.app-card {
    border-radius: 12px;
    box-shadow: 0 8px 16px rgba(0, 0, 0, 0.15);
    padding: 20px;
    background: linear-gradient(135deg, #2a3a4a 0%, #1e2a3a 100%);
    margin-bottom: 20px;
}
/* Header styling */
h1, h2, h3 {
    font-weight: 700 !important;
    color: white !important;
}
/* Labels styling */
label, .label {
    font-size: 1rem !important;
    font-weight: 600 !important;
    color: white !important;
    margin-bottom: 6px !important;
}
/* Input and slider styling */
.slider-label {
    font-weight: 600 !important;
    color: white !important;
    font-size: 0.95rem !important;
}
/* Button styling */
button.primary {
    background: linear-gradient(135deg, #3498db, #2980b9) !important;
    color: white !important;
    font-weight: 600 !important;
    border-radius: 8px !important;
    padding: 12px 24px !important;
    font-size: 1.1rem !important;
    transition: all 0.3s ease !important;
    border: none !important;
    box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1), 0 0 10px rgba(52, 152, 219, 0.4) !important;
}
button.primary:hover {
    background: linear-gradient(135deg, #2980b9, #2573a7) !important;
    box-shadow: 0 6px 12px rgba(0, 0, 0, 0.2), 0 0 15px rgba(52, 152, 219, 0.6) !important;
    transform: translateY(-2px) !important;
}
/* Radio buttons */
.radio-group label {
    font-weight: 600 !important;
    color: white !important;
}
/* Tab styling */
.tab-nav {
    font-weight: 600 !important;
    font-size: 1.05rem !important;
}
/* Responsive adjustments */
@media (max-width: 768px) {
    .gradio-container {
        padding: 10px !important;
    }
    
    label, .label {
        font-size: 0.95rem !important;
    }
    
    button.primary {
        padding: 10px 18px !important;
        font-size: 1rem !important;
    }
}
"""

# Enable OpenCL for better performance
cv2.ocl.setUseOpenCL(True)

# ------------------- Logger Class ------------------- #
class UsageLogger:
    """Simple logger to record app usage timestamps using temp directory in Hugging Face Spaces"""
    def __init__(self, log_filename="usage_logs.json"):
        # Use the temporary directory in Hugging Face Spaces
        self.logs_dir = tempfile.gettempdir()
        self.log_file = os.path.join(self.logs_dir, log_filename)
        
        print(f"Log file location: {self.log_file}")
        self.ensure_log_file_exists()
    
    def ensure_log_file_exists(self):
        """Create log file with empty array if it doesn't exist"""
        try:
            if not os.path.exists(self.log_file):
                with open(self.log_file, 'w') as f:
                    json.dump({"visits": [], "features": []}, f)
            # Test if file is readable/writable
            with open(self.log_file, 'r+') as f:
                pass
        except Exception as e:
            print(f"Error accessing log file: {str(e)}")
            # Create another temporary file as fallback
            temp_log = tempfile.NamedTemporaryFile(mode='w+', suffix='.json', delete=False)
            self.log_file = temp_log.name
            print(f"Using fallback temp log file: {self.log_file}")
            with open(self.log_file, 'w') as f:
                json.dump({"visits": [], "features": []}, f)
    
    def log_visit(self):
        """Log a timestamp when the app is visited/used"""
        current_time = datetime.datetime.now().isoformat()
        
        try:
            # Read existing logs or create new if file doesn't exist or is corrupt
            try:
                if os.path.exists(self.log_file) and os.path.getsize(self.log_file) > 0:
                    with open(self.log_file, 'r') as f:
                        logs = json.load(f)
                else:
                    logs = {"visits": [], "features": []}
            except (json.JSONDecodeError, FileNotFoundError):
                # If file is corrupt or doesn't exist, start fresh
                logs = {"visits": [], "features": []}
            
            # Append new timestamp
            logs["visits"].append({"timestamp": current_time})
            
            # Write updated logs
            with open(self.log_file, 'w') as f:
                json.dump(logs, f, indent=2)
                
            print(f"Visit logged at {current_time}")
            return True
        except Exception as e:
            print(f"Error logging visit: {str(e)}")
            # Try creating a new temporary file if there was an error
            try:
                temp_log = tempfile.NamedTemporaryFile(mode='w+', suffix='.json', delete=False)
                self.log_file = temp_log.name
                print(f"Created new temp log file: {self.log_file}")
                logs = {"visits": [{"timestamp": current_time}], "features": []}
                json.dump(logs, temp_log, indent=2)
                temp_log.close()
                return True
            except Exception as backup_error:
                print(f"Error creating backup log file: {str(backup_error)}")
                return False
    
    def log_usage(self, feature_type, media_type=None):
        """Log when a specific feature is used
        Args:
            feature_type: The feature used (e.g., 'black_white_image', 'sketch_video')
            media_type: The type of media processed (e.g., 'image', 'video')
        """
        current_time = datetime.datetime.now().isoformat()
        
        # Extract media type from feature name if not provided
        if media_type is None:
            if "image" in feature_type:
                media_type = "image"
            elif "video" in feature_type:
                media_type = "video"
            else:
                media_type = "unknown"
        
        # Extract service type
        if "black_white" in feature_type:
            service_type = "black_and_white"
        elif "sketch" in feature_type:
            service_type = "pencil_sketch"
        else:
            service_type = "unknown"
        
        try:
            # Read existing logs or create new if file doesn't exist or is corrupt
            try:
                if os.path.exists(self.log_file) and os.path.getsize(self.log_file) > 0:
                    with open(self.log_file, 'r') as f:
                        logs = json.load(f)
                else:
                    logs = {"visits": [], "features": []}
            except (json.JSONDecodeError, FileNotFoundError):
                # If file is corrupt or doesn't exist, start fresh
                logs = {"visits": [], "features": []}
            
            # Make sure features key exists
            if "features" not in logs:
                logs["features"] = []
            
            # Append new usage record
            logs["features"].append({
                "timestamp": current_time,
                "feature": feature_type,
                "service": service_type,
                "media_type": media_type
            })
            
            # Write updated logs
            with open(self.log_file, 'w') as f:
                json.dump(logs, f, indent=2)
                
            print(f"Feature usage logged: {feature_type} ({media_type}) at {current_time}")
            return True
        except Exception as e:
            print(f"Error logging usage: {str(e)}")
            # Try creating a new temporary file if there was an error
            try:
                temp_log = tempfile.NamedTemporaryFile(mode='w+', suffix='.json', delete=False)
                self.log_file = temp_log.name
                print(f"Created new temp log file for usage: {self.log_file}")
                logs = {"visits": [], "features": [{
                    "timestamp": current_time,
                    "feature": feature_type,
                    "service": service_type,
                    "media_type": media_type
                }]}
                json.dump(logs, temp_log, indent=2)
                temp_log.close()
                return True
            except Exception as backup_error:
                print(f"Error creating backup log file: {str(backup_error)}")
                return False

# Create a global logger instance
logger = UsageLogger()

# Rest of the code remains unchanged...

# ------------------- Theme Setup ------------------- #
def create_custom_theme():
    """Create a custom dark theme for the interface"""
    return gr.themes.Base().set(
        body_background_fill="linear-gradient(to bottom right, #1a1f2c, #121620)",
        body_background_fill_dark="linear-gradient(to bottom right, #1a1f2c, #121620)",
        body_text_color="white",
        body_text_color_dark="white",
        button_primary_background_fill="linear-gradient(135deg, #3498db, #2980b9)",
        button_primary_background_fill_hover="linear-gradient(135deg, #2980b9, #2573a7)",
        button_primary_text_color="white",
        button_primary_text_color_dark="white",
        button_primary_border_color="transparent",
        button_primary_border_color_dark="transparent",
        button_secondary_background_fill="#34495e",
        button_secondary_background_fill_hover="#2c3e50",
        button_secondary_text_color="white",
        button_secondary_text_color_dark="white",
        block_title_text_color="white",
        block_title_text_color_dark="white",
        block_label_text_color="white",
        block_label_text_color_dark="white",
        slider_color="#3498db",
        slider_color_dark="#3498db",
        border_color_primary="#3498db",
        border_color_primary_dark="#3498db",
        background_fill_primary="#2a3a4a",
        background_fill_primary_dark="#2a3a4a",
        background_fill_secondary="#1e2a3a",
        background_fill_secondary_dark="#1e2a3a",
        border_radius_size="12px",
        spacing_md="12px",
        spacing_lg="16px",
        text_size="16px",
        text_md="18px",
        text_lg="20px",
        text_xl="24px",
        font=["Roboto", "ui-sans-serif", "system-ui", "sans-serif"],
    )

# ------------------- Black & White Converter Functions ------------------- #
def convert_to_black_white(image, threshold_value=127, method="otsu"):
    """Convert image to black and white using specified thresholding method"""
    if isinstance(image, str):
        image = cv2.imread(image)

    # Convert to grayscale if not already
    if len(image.shape) == 3:
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    else:
        gray = image

    if method == "adaptive":
        binary = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
                                      cv2.THRESH_BINARY, 11, 2)
    elif method == "otsu":
        _, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
    else:
        _, binary = cv2.threshold(gray, threshold_value, 255, cv2.THRESH_BINARY)

    return binary

def process_image_bw(image, threshold_value, method):
    """Process image with black and white thresholding"""
    if image is None:
        return None

    # Convert to numpy array if PIL Image
    if isinstance(image, Image.Image):
        image_np = np.array(image)
        # Convert RGB to BGR for OpenCV
        if len(image_np.shape) == 3:
            image_np = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
    else:
        image_np = image

    result = convert_to_black_white(image_np, threshold_value, method)
    return result

def process_video_bw(video_path, threshold_value, method):
    """Process video with black and white thresholding"""
    if not os.path.exists(video_path):
        return "Video file not found", None

    try:
        cap = cv2.VideoCapture(video_path)
        if not cap.isOpened():
            return "Could not open video file", None

        # Get video properties
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(cap.get(cv2.CAP_PROP_FPS))

        # Create temporary output file
        temp_output = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
        output_path = temp_output.name
        temp_output.close()

        # Create video writer
        out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height), isColor=False)

        # Process each frame
        while cap.isOpened():
            ret, frame = cap.read()
            if not ret:
                break

            bw_frame = convert_to_black_white(frame, threshold_value, method)
            out.write(bw_frame)

        cap.release()
        out.release()

        return "Video processed successfully", output_path
    except Exception as e:
        return f"Error processing video: {str(e)}", None

# ------------------- Pencil Sketch Converter Functions ------------------- #
def process_image_sketch(image, intensity=255, blur_ksize=21, sigma=0):
    """Convert image to pencil sketch effect"""
    if image is None:
        return None

    # Convert to numpy array if PIL Image
    if isinstance(image, Image.Image):
        image_np = np.array(image)
        # Convert RGB to BGR for OpenCV
        if len(image_np.shape) == 3:
            image_np = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
    else:
        image_np = image

    # Convert to grayscale
    gray = cv2.cvtColor(image_np, cv2.COLOR_BGR2GRAY) if len(image_np.shape) == 3 else image_np

    # Create sketch effect
    inverted = cv2.bitwise_not(gray)
    blur_ksize = blur_ksize if blur_ksize % 2 == 1 else blur_ksize + 1  # Ensure kernel size is odd
    blurred = cv2.GaussianBlur(inverted, (blur_ksize, blur_ksize), sigma)
    sketch = cv2.divide(gray, cv2.bitwise_not(blurred), scale=intensity)

    return sketch

def process_video_sketch(video_path, intensity=255, blur_ksize=21, sigma=0):
    """Process video with pencil sketch effect"""
    if not os.path.exists(video_path):
        return "Video file not found", None

    try:
        cap = cv2.VideoCapture(video_path)
        if not cap.isOpened():
            return "Could not open video file", None

        # Get video properties
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(cap.get(cv2.CAP_PROP_FPS))

        # Create temporary output file
        temp_output = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
        output_path = temp_output.name
        temp_output.close()

        # Create video writer
        out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height), isColor=True)

        # Process each frame
        while cap.isOpened():
            ret, frame = cap.read()
            if not ret:
                break

            sketch_frame = process_image_sketch(frame, intensity, blur_ksize, sigma)
            # Convert grayscale to BGR for video output
            sketch_bgr = cv2.cvtColor(sketch_frame, cv2.COLOR_GRAY2BGR)
            out.write(sketch_bgr)

        cap.release()
        out.release()

        return "Video processed successfully", output_path
    except Exception as e:
        return f"Error processing video: {str(e)}", None

# ------------------- Gradio Interface Functions ------------------- #
def black_white_image(image, threshold_method, threshold_value):
    """Process image with black and white filter for Gradio"""
    # Log the usage of this feature
    logger.log_usage("black_white_image", "image")
    
    if threshold_method != "manual":
        threshold_value = 0  # Not used for adaptive or Otsu

    result = process_image_bw(image, threshold_value, threshold_method)
    return Image.fromarray(result)

def black_white_video(video, threshold_method, threshold_value):
    """Process video with black and white filter for Gradio"""
    # Log the usage of this feature
    logger.log_usage("black_white_video", "video")
    
    if threshold_method != "manual":
        threshold_value = 0  # Not used for adaptive or Otsu

    message, output_path = process_video_bw(video, threshold_value, threshold_method)
    if output_path:
        return output_path
    else:
        raise gr.Error(message)

def sketch_image(image, intensity, blur_ksize, sigma):
    """Process image with pencil sketch filter for Gradio"""
    # Log the usage of this feature
    logger.log_usage("sketch_image", "image")
    
    result = process_image_sketch(image, intensity, blur_ksize, sigma)
    return Image.fromarray(result)

def sketch_video(video, intensity, blur_ksize, sigma):
    """Process video with pencil sketch filter for Gradio"""
    # Log the usage of this feature
    logger.log_usage("sketch_video", "video")
    
    message, output_path = process_video_sketch(video, intensity, blur_ksize, sigma)
    if output_path:
        return output_path
    else:
        raise gr.Error(message)

# ------------------- Create Gradio Interface ------------------- #
def create_interface():
    # Tooltip content
    otsu_tooltip = "Otsu automatically determines the optimal threshold value by analyzing the image histogram."
    adaptive_tooltip = "Adaptive thresholding calculates different thresholds for different areas of the image, useful for images with varying lighting conditions."
    manual_tooltip = "Manual threshold lets you set a specific brightness cutoff point between black and white pixels."
    intensity_tooltip = "Controls the strength of the pencil sketch effect. Higher values create more contrast."
    blur_tooltip = "Controls how much the image is blurred. Higher values create a softer sketch effect."
    sigma_tooltip = "Controls the standard deviation of the Gaussian blur. Higher values increase the blurring effect."

    # Black and White Image Interface
    with gr.Blocks(title="Image Processor", css=custom_css, theme=gr.themes.Base()) as app:
        # Log app visit at launch
        def log_application_visit():
            print("Application loaded - logging visit")
            success = logger.log_visit()
            if success:
                print("Visit logged successfully")
            else:
                print("Failed to log visit")
            return None
            
        app.load(fn=log_application_visit, inputs=None, outputs=None)
        
        with gr.Row(elem_classes="container"):
            gr.Markdown("""
            # Image and Video Processor
            Transform your media with professional black & white conversion and pencil sketch effects
            """)

        with gr.Tabs() as tabs:
            
            with gr.TabItem("Pencil Sketch Converter", elem_classes="app-card"):
                with gr.Tabs() as sketch_tabs:
                    with gr.TabItem("Image Processing"):
                        with gr.Row(equal_height=True):
                            with gr.Column(scale=1):
                                sketch_image_input = gr.Image(label="Input Image")
                                
                                with gr.Group():
                                    sketch_intensity = gr.Slider(
                                        minimum=1,
                                        maximum=255,
                                        value=255,
                                        step=1,
                                        label="Intensity",
                                        info=intensity_tooltip,
                                        elem_classes="slider-label"
                                    )
                                    
                                    sketch_blur = gr.Slider(
                                        minimum=1,
                                        maximum=99,
                                        value=21,
                                        step=2,
                                        label="Blur Kernel Size",
                                        info=blur_tooltip,
                                        elem_classes="slider-label"
                                    )
                                    
                                    sketch_sigma = gr.Slider(
                                        minimum=0,
                                        maximum=50,
                                        value=0,
                                        step=0.1,
                                        label="Standard Deviation",
                                        info=sigma_tooltip,
                                        elem_classes="slider-label"
                                    )
                                    
                                sketch_image_btn = gr.Button("Convert", elem_classes="primary")

                            with gr.Column(scale=1):
                                sketch_image_output = gr.Image(label="Processed Image")

                    with gr.TabItem("Video Processing"):
                        with gr.Row(equal_height=True):
                            with gr.Column(scale=1):
                                sketch_video_input = gr.Video(label="Input Video")
                                
                                with gr.Group():
                                    sketch_video_intensity = gr.Slider(
                                        minimum=1,
                                        maximum=255,
                                        value=255,
                                        step=1,
                                        label="Intensity",
                                        info=intensity_tooltip,
                                        elem_classes="slider-label"
                                    )
                                    
                                    sketch_video_blur = gr.Slider(
                                        minimum=1,
                                        maximum=99,
                                        value=21,
                                        step=2,
                                        label="Blur Kernel Size",
                                        info=blur_tooltip,
                                        elem_classes="slider-label"
                                    )
                                    
                                    sketch_video_sigma = gr.Slider(
                                        minimum=0,
                                        maximum=50,
                                        value=0,
                                        step=0.1,
                                        label="Standard Deviation",
                                        info=sigma_tooltip,
                                        elem_classes="slider-label"
                                    )
                                    
                                sketch_video_btn = gr.Button("Convert", elem_classes="primary")

                            with gr.Column(scale=1):
                                sketch_video_output = gr.Video(label="Processed Video")



            with gr.TabItem("Black & White Converter", elem_classes="app-card"):
                with gr.Tabs() as bw_tabs:
                    with gr.TabItem("Image Processing"):
                        with gr.Row(equal_height=True):
                            with gr.Column(scale=1):
                                bw_image_input = gr.Image(label="Input Image", elem_classes="input-image")
                                
                                with gr.Group():
                                    bw_method = gr.Radio(
                                        choices=["otsu", "adaptive", "manual"],
                                        value="otsu",
                                        label="Thresholding Method",
                                        info=otsu_tooltip,
                                        elem_classes="radio-group"
                                    )
                                    
                                    bw_threshold = gr.Slider(
                                        minimum=0,
                                        maximum=255,
                                        value=127,
                                        step=1,
                                        label="Manual Threshold Value",
                                        info=manual_tooltip,
                                        interactive=True,
                                        elem_classes="slider-label"
                                    )
                                    
                                bw_image_btn = gr.Button("Convert", elem_classes="primary")

                            with gr.Column(scale=1):
                                bw_image_output = gr.Image(label="Processed Image")

                    with gr.TabItem("Video Processing"):
                        with gr.Row(equal_height=True):
                            with gr.Column(scale=1):
                                bw_video_input = gr.Video(label="Input Video")
                                
                                with gr.Group():
                                    bw_video_method = gr.Radio(
                                        choices=["otsu", "adaptive", "manual"],
                                        value="otsu",
                                        label="Thresholding Method",
                                        info=otsu_tooltip,
                                        elem_classes="radio-group"
                                    )
                                    
                                    bw_video_threshold = gr.Slider(
                                        minimum=0,
                                        maximum=255,
                                        value=127,
                                        step=1,
                                        label="Manual Threshold Value",
                                        info=manual_tooltip,
                                        interactive=True,
                                        elem_classes="slider-label"
                                    )
                                    
                                bw_video_btn = gr.Button("Convert", elem_classes="primary")

                            with gr.Column(scale=1):
                                bw_video_output = gr.Video(label="Processed Video")



            
        with gr.Row(elem_classes="container"):
            gr.Markdown("""
            ### How to use:
            1. Upload an image or video
            2. Adjust the settings as needed
            3. Click the Convert button to process your media
            """)

        # Set up event listeners
        bw_image_btn.click(
            fn=black_white_image,
            inputs=[bw_image_input, bw_method, bw_threshold],
            outputs=bw_image_output
        )

        bw_video_btn.click(
            fn=black_white_video,
            inputs=[bw_video_input, bw_video_method, bw_video_threshold],
            outputs=bw_video_output
        )

        sketch_image_btn.click(
            fn=sketch_image,
            inputs=[sketch_image_input, sketch_intensity, sketch_blur, sketch_sigma],
            outputs=sketch_image_output
        )

        sketch_video_btn.click(
            fn=sketch_video,
            inputs=[sketch_video_input, sketch_video_intensity, sketch_video_blur, sketch_video_sigma],
            outputs=sketch_video_output
        )

        # Make blur slider always odd
        def update_blur(value):
            return value if value % 2 == 1 else value + 1

        sketch_blur.change(update_blur, sketch_blur, sketch_blur)
        sketch_video_blur.change(update_blur, sketch_video_blur, sketch_video_blur)

        # Add visibility toggle based on method selection
        def update_threshold_visibility(method):
            return gr.update(visible=(method == "manual"))
        
        bw_method.change(update_threshold_visibility, bw_method, bw_threshold)
        bw_video_method.change(update_threshold_visibility, bw_video_method, bw_video_threshold)

    return app

# ------------------- Launch App ------------------- #
if __name__ == "__main__":
    app = create_interface()
    app.launch()