File size: 26,262 Bytes
25e6673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a6d545
25e6673
 
 
 
 
4a6d545
25e6673
 
 
 
 
 
 
4a6d545
25e6673
 
4a6d545
25e6673
4a6d545
25e6673
 
 
 
4a6d545
25e6673
 
4a6d545
25e6673
 
 
4a6d545
25e6673
 
 
 
 
 
4a6d545
25e6673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a6d545
25e6673
4a6d545
25e6673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a6d545
25e6673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a6d545
25e6673
 
 
 
 
4a6d545
25e6673
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
# Construction Site Safety Analyzer - FIXED VERSION
# Using Local LLaVA + Llama 3 70B via Groq API
# Google Colab Implementation with JSON Error Handling

# ============================================================================
# SETUP AND INSTALLATION
# ============================================================================

# Cell 1: Install required packages
#!pip install transformers torch torchvision Pillow requests opencv-python
#!pip install groq accelerate bitsandbytes
#!pip install gradio ipywidgets

# Cell 2: Import libraries
import torch
import requests
import json
import base64
import re
from PIL import Image
import io
import cv2
import numpy as np
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
from groq import Groq
import gradio as gr
from google.colab import files
import matplotlib.pyplot as plt
from typing import Dict, List, Optional, Tuple
import warnings
warnings.filterwarnings('ignore')

# Cell 3: Configuration and API Setup
class Config:
    def __init__(self):
        self.groq_api_key = ""  # Set your Groq API key here
        self.llava_model_name = "llava-hf/llava-v1.6-mistral-7b-hf"
        self.max_qa_rounds = 5  # Reduced to prevent timeout issues
        self.device = "cuda" if torch.cuda.is_available() else "cpu"

    def set_groq_key(self, api_key: str):
        self.groq_api_key = api_key

config = Config()

# Prompt user for API key
from getpass import getpass
groq_key = getpass("Enter your Groq API key: ")
config.set_groq_key(groq_key)

print(f"Using device: {config.device}")
print(f"CUDA available: {torch.cuda.is_available()}")

# ============================================================================
# LLAVA MODEL SETUP (LOCAL)
# ============================================================================

# Cell 4: Load LLaVA Model
class LocalLLaVA:
    def __init__(self, model_name: str, device: str):
        print("Loading LLaVA model locally...")
        self.device = device
        self.processor = LlavaNextProcessor.from_pretrained(model_name)

        # Load model with appropriate settings for Colab
        if device == "cuda":
            self.model = LlavaNextForConditionalGeneration.from_pretrained(
                model_name,
                torch_dtype=torch.float16,
                low_cpu_mem_usage=True,
                load_in_4bit=True,  # Use 4-bit quantization to save memory
                device_map="auto"
            )
        else:
            self.model = LlavaNextForConditionalGeneration.from_pretrained(
                model_name,
                torch_dtype=torch.float32,
                low_cpu_mem_usage=True
            )
            self.model.to(device)

        print("LLaVA model loaded successfully!")

    def analyze_image(self, image: Image.Image, question: str = None) -> str:
        """Analyze construction site image with optional specific question"""

        if question is None:
            # Initial comprehensive analysis prompt
            prompt = """[INST] <image>
You are a construction safety expert analyzing this construction site image.
Please provide a detailed analysis covering:

1. Overall scene description and type of construction work
2. Workers present and their activities
3. Heavy machinery and equipment visible
4. Safety equipment and PPE compliance
5. Visible hazards and safety concerns
6. Site organization and conditions

Be specific and detailed in your observations. Focus on safety-critical elements.
[/INST]"""
        else:
            # Specific question prompt
            prompt = f"[INST] <image>\nAs a construction safety expert, please answer this specific question about the construction site image:\n\n{question}\n\nProvide a detailed and specific answer based on what you can observe in the image.[/INST]"

        try:
            # Process inputs
            inputs = self.processor(prompt, image, return_tensors="pt").to(self.device)

            # Generate response
            with torch.no_grad():
                output = self.model.generate(
                    **inputs,
                    max_new_tokens=500,
                    do_sample=True,
                    temperature=0.1,
                    pad_token_id=self.processor.tokenizer.eos_token_id
                )

            # Decode response
            response = self.processor.decode(output[0], skip_special_tokens=True)

            # Extract only the generated response (after [/INST])
            if "[/INST]" in response:
                response = response.split("[/INST]")[-1].strip()

            return response

        except Exception as e:
            print(f"Error in LLaVA analysis: {e}")
            return f"Error analyzing image: {str(e)}"

# Initialize LLaVA
llava_model = LocalLLaVA(config.llava_model_name, config.device)

# ============================================================================
# GROQ LLAMA 3 70B INTEGRATION - FIXED JSON HANDLING
# ============================================================================

# Cell 5: Groq Llama Integration with Error Handling
class GroqLlamaAnalyzer:
    def __init__(self, api_key: str):
        self.client = Groq(api_key=api_key)
        self.model_name = "llama3-70b-8192"

    def extract_json_from_text(self, text: str) -> Optional[Dict]:
        """Extract JSON from text response, handling various formats"""
        try:
            # First, try to parse the entire text as JSON
            return json.loads(text)
        except:
            pass

        # Look for JSON-like patterns in the text
        json_patterns = [
            r'\{[^{}]*(?:\{[^{}]*\}[^{}]*)*\}',  # Simple nested JSON
            r'\{.*?\}',  # Basic JSON pattern
        ]

        for pattern in json_patterns:
            matches = re.findall(pattern, text, re.DOTALL)
            for match in matches:
                try:
                    return json.loads(match)
                except:
                    continue

        return None

    def generate_question(self, context: str, round_num: int) -> Dict:
        """Generate dynamic questions based on context analysis"""

        system_prompt = """You are an expert construction safety analyst. Generate specific questions to gather detailed safety information about construction sites. Always respond in valid JSON format."""

        user_prompt = f"""Based on the construction site analysis so far (Round {round_num + 1}):

{context[:2000]}  # Truncate to prevent token limits

Generate ONE specific question to identify safety risks, or respond "ANALYSIS_COMPLETE" if sufficient.

Respond ONLY in this exact JSON format:
{{"action": "QUESTION", "question": "your specific safety question", "reasoning": "why this question matters for safety"}}

OR

{{"action": "ANALYSIS_COMPLETE", "reasoning": "sufficient information gathered"}}"""

        try:
            response = self.client.chat.completions.create(
                model=self.model_name,
                messages=[
                    {"role": "system", "content": system_prompt},
                    {"role": "user", "content": user_prompt}
                ],
                temperature=0.3,
                max_tokens=300
            )

            response_text = response.choices[0].message.content.strip()
            print(f"Raw Groq response: {response_text}")

            # Try to extract JSON
            result = self.extract_json_from_text(response_text)

            if result is None:
                # Fallback: create a question based on round number
                safety_questions = [
                    "What personal protective equipment (PPE) are workers wearing or missing?",
                    "Are there any fall protection measures in place for workers at height?",
                    "What heavy machinery is present and are proper safety protocols being followed?",
                    "Are there any visible electrical hazards or unsafe conditions?",
                    "Is the work area properly organized and free of debris or obstacles?"
                ]

                if round_num < len(safety_questions):
                    result = {
                        "action": "QUESTION",
                        "question": safety_questions[round_num],
                        "reasoning": "Systematic safety assessment"
                    }
                else:
                    result = {
                        "action": "ANALYSIS_COMPLETE",
                        "reasoning": "Completed systematic safety review"
                    }

            # Validate result structure
            if "action" not in result:
                result["action"] = "ANALYSIS_COMPLETE"
            if result["action"] == "QUESTION" and "question" not in result:
                result["action"] = "ANALYSIS_COMPLETE"

            return result

        except Exception as e:
            print(f"Error generating question: {e}")
            return {
                "action": "ANALYSIS_COMPLETE",
                "reasoning": f"Error occurred: {str(e)}"
            }

    def final_analysis(self, context: str) -> Dict:
        """Generate comprehensive safety analysis with improved error handling"""

        system_prompt = """You are a senior construction safety expert. Analyze the provided information and create a comprehensive safety assessment. You must respond ONLY in valid JSON format."""

        user_prompt = f"""Based on all construction site information:

{context[:3000]}  # Truncate to prevent token limits

Create a comprehensive safety analysis in this EXACT JSON format:
{{
    "risk_level": "LOW/MODERATE/HIGH/CRITICAL",
    "confidence_score": "85%",
    "executive_summary": "Brief overview of main safety findings",
    "identified_risks": [
        "Risk 1 with severity level",
        "Risk 2 with severity level"
    ],
    "immediate_actions": [
        "Urgent action 1",
        "Urgent action 2"
    ],
    "prevention_methods": [
        "Prevention method 1",
        "Prevention method 2"
    ],
    "regulatory_compliance": [
        "Compliance issue 1",
        "Compliance issue 2"
    ]
}}

Respond ONLY with valid JSON, no additional text."""

        try:
            response = self.client.chat.completions.create(
                model=self.model_name,
                messages=[
                    {"role": "system", "content": system_prompt},
                    {"role": "user", "content": user_prompt}
                ],
                temperature=0.2,
                max_tokens=1500
            )

            response_text = response.choices[0].message.content.strip()
            print(f"Raw final analysis response: {response_text}")

            # Try to extract JSON
            result = self.extract_json_from_text(response_text)

            if result is None:
                # Create a fallback analysis structure
                result = {
                    "risk_level": "MODERATE",
                    "confidence_score": "75%",
                    "executive_summary": "Analysis completed with limited data processing capabilities.",
                    "identified_risks": ["Unable to fully parse detailed risk assessment"],
                    "immediate_actions": ["Conduct manual safety review"],
                    "prevention_methods": ["Implement standard safety protocols"],
                    "regulatory_compliance": ["Review OSHA compliance standards"]
                }

            # Ensure all required fields exist
            required_fields = ["risk_level", "confidence_score", "executive_summary",
                             "identified_risks", "immediate_actions", "prevention_methods",
                             "regulatory_compliance"]

            for field in required_fields:
                if field not in result:
                    result[field] = ["Information not available"] if field.endswith(('_risks', '_actions', '_methods', '_compliance')) else "Not available"

            return result

        except Exception as e:
            print(f"Error in final analysis: {e}")
            return {
                "error": str(e),
                "risk_level": "UNKNOWN",
                "confidence_score": "0%",
                "executive_summary": f"Analysis failed due to: {str(e)}",
                "identified_risks": [f"System error: {str(e)}"],
                "immediate_actions": ["Manual review required"],
                "prevention_methods": ["System troubleshooting needed"],
                "regulatory_compliance": ["Unable to assess due to system error"]
            }

# Initialize Groq analyzer
groq_analyzer = GroqLlamaAnalyzer(config.groq_api_key)

# ============================================================================
# MAIN ANALYSIS SYSTEM - IMPROVED ERROR HANDLING
# ============================================================================

# Cell 6: Complete Analysis System with Better Error Handling
class ConstructionSafetyAnalyzer:
    def __init__(self, llava_model: LocalLLaVA, groq_analyzer: GroqLlamaAnalyzer):
        self.llava = llava_model
        self.groq = groq_analyzer
        self.qa_history = []
        self.analysis_context = ""

    def analyze_construction_site(self, image_path: str) -> Dict:
        """Complete construction site safety analysis with improved error handling"""

        try:
            # Load and display image
            image = Image.open(image_path)
            plt.figure(figsize=(10, 8))
            plt.imshow(image)
            plt.axis('off')
            plt.title("Construction Site Image for Analysis")
            plt.show()

            print("πŸ” Starting Construction Site Safety Analysis...")
            print("=" * 60)

            # Step 1: Initial LLaVA analysis
            print("πŸ“Š Step 1: Initial Image Analysis with LLaVA...")
            initial_analysis = self.llava.analyze_image(image)

            print("Initial Analysis:")
            print("-" * 30)
            print(initial_analysis)
            print("\n")

            # Initialize context
            self.analysis_context = f"Initial Visual Analysis:\n{initial_analysis}\n\n"
            self.qa_history = []

            # Step 2: Interactive Q&A rounds with error handling
            print("πŸ€– Step 2: Dynamic Question Generation and Analysis...")
            print("=" * 60)

            round_num = 0
            max_rounds = config.max_qa_rounds
            consecutive_errors = 0

            while round_num < max_rounds and consecutive_errors < 3:
                print(f"\nπŸ”„ Round {round_num + 1}:")
                print("-" * 20)

                try:
                    # Generate question with Llama
                    print("🧠 Llama 3 70B analyzing and generating question...")
                    question_result = self.groq.generate_question(self.analysis_context, round_num)

                    if question_result["action"] == "ANALYSIS_COMPLETE":
                        print("βœ… Analysis determined complete.")
                        print(f"Reasoning: {question_result.get('reasoning', 'Analysis complete')}")
                        break

                    question = question_result.get("question", "")
                    reasoning = question_result.get("reasoning", "")

                    if not question:
                        print("⚠️ No question generated, moving to final analysis.")
                        break

                    print(f"Generated Question: {question}")
                    print(f"Reasoning: {reasoning}")

                    # Get answer from LLaVA
                    print("πŸ‘οΈ LLaVA analyzing specific aspect...")
                    answer = self.llava.analyze_image(image, question)

                    print(f"LLaVA Response: {answer}")

                    # Store Q&A
                    qa_round = {
                        "round": round_num + 1,
                        "question": question,
                        "answer": answer,
                        "reasoning": reasoning
                    }
                    self.qa_history.append(qa_round)

                    # Update context
                    self.analysis_context += f"Q{round_num + 1}: {question}\nA{round_num + 1}: {answer}\nReasoning: {reasoning}\n\n"

                    consecutive_errors = 0  # Reset error counter on success

                except Exception as e:
                    print(f"⚠️ Error in round {round_num + 1}: {e}")
                    consecutive_errors += 1
                    if consecutive_errors >= 3:
                        print("πŸ›‘ Too many consecutive errors, proceeding to final analysis.")
                        break

                round_num += 1

            # Step 3: Final comprehensive analysis
            print("\nπŸ“‹ Step 3: Generating Comprehensive Safety Report...")
            print("=" * 60)

            final_analysis = self.groq.final_analysis(self.analysis_context)

            return {
                "initial_analysis": initial_analysis,
                "qa_rounds": self.qa_history,
                "final_analysis": final_analysis,
                "total_rounds": len(self.qa_history),
                "status": "completed"
            }

        except Exception as e:
            print(f"🚨 Critical error in analysis: {e}")
            return {
                "error": str(e),
                "status": "failed",
                "initial_analysis": "Failed to analyze image",
                "qa_rounds": [],
                "final_analysis": {
                    "risk_level": "UNKNOWN",
                    "confidence_score": "0%",
                    "executive_summary": f"Analysis failed: {str(e)}",
                    "identified_risks": [f"System error: {str(e)}"],
                    "immediate_actions": ["Manual analysis required"],
                    "prevention_methods": ["System troubleshooting needed"],
                    "regulatory_compliance": ["Unable to assess"]
                },
                "total_rounds": 0
            }

    def display_results(self, results: Dict):
        """Display formatted analysis results with error handling"""

        print("\n" + "=" * 80)
        print("πŸ—οΈ CONSTRUCTION SITE SAFETY ANALYSIS REPORT")
        print("=" * 80)

        if results.get("status") == "failed":
            print(f"\n❌ ANALYSIS FAILED")
            print("-" * 40)
            print(f"Error: {results.get('error', 'Unknown error')}")
            return

        # Executive Summary
        final = results.get("final_analysis", {})
        print(f"\n🎯 EXECUTIVE SUMMARY")
        print("-" * 40)
        print(f"Risk Level: {final.get('risk_level', 'Unknown')}")
        print(f"Confidence: {final.get('confidence_score', 'Unknown')}")
        print(f"Summary: {final.get('executive_summary', 'No summary available')}")

        # Q&A Summary
        print(f"\nπŸ“ ANALYSIS PROCESS")
        print("-" * 40)
        print(f"Total Investigation Rounds: {results.get('total_rounds', 0)}")

        for qa in results.get("qa_rounds", []):
            print(f"\nRound {qa['round']}: {qa['question']}")
            answer_preview = qa['answer'][:100] + "..." if len(qa['answer']) > 100 else qa['answer']
            print(f"Answer: {answer_preview}")

        # Risk Assessment
        risks = final.get("identified_risks", [])
        if risks and risks != ["Information not available"]:
            print(f"\n⚠️ IDENTIFIED RISKS")
            print("-" * 40)
            for i, risk in enumerate(risks, 1):
                print(f"{i}. {risk}")

        # Immediate Actions
        actions = final.get("immediate_actions", [])
        if actions and actions != ["Information not available"]:
            print(f"\n🚨 IMMEDIATE ACTIONS REQUIRED")
            print("-" * 40)
            for i, action in enumerate(actions, 1):
                print(f"{i}. {action}")

        # Prevention Methods
        methods = final.get("prevention_methods", [])
        if methods and methods != ["Information not available"]:
            print(f"\nπŸ›‘οΈ PREVENTION METHODS")
            print("-" * 40)
            for i, method in enumerate(methods, 1):
                print(f"{i}. {method}")

        # Regulatory Compliance
        compliance = final.get("regulatory_compliance", [])
        if compliance and compliance != ["Information not available"]:
            print(f"\nπŸ“œ REGULATORY COMPLIANCE ISSUES")
            print("-" * 40)
            for i, issue in enumerate(compliance, 1):
                print(f"{i}. {issue}")

# Initialize the complete system
analyzer = ConstructionSafetyAnalyzer(llava_model, groq_analyzer)

# ============================================================================
# IMPROVED GRADIO INTERFACE
# ============================================================================

# Cell 7: Create Improved Gradio Interface
def create_gradio_interface():
    def analyze_uploaded_image(image):
        if image is None:
            return "Please upload an image first."

        # Save temporary image
        temp_path = "/tmp/construction_site.jpg"
        image.save(temp_path)

        try:
            # Run analysis
            results = analyzer.analyze_construction_site(temp_path)

            if results.get("status") == "failed":
                return f"# ❌ Analysis Failed\n\nError: {results.get('error', 'Unknown error')}\n\nPlease try again or check your API configuration."

            # Format results for display
            final = results.get("final_analysis", {})

            report = f"""
# πŸ—οΈ Construction Site Safety Analysis Report

## 🎯 Executive Summary
- **Risk Level**: {final.get('risk_level', 'Unknown')}
- **Confidence**: {final.get('confidence_score', 'Unknown')}
- **Summary**: {final.get('executive_summary', 'No summary available')}

## πŸ“Š Analysis Process
- **Total Investigation Rounds**: {results.get('total_rounds', 0)}
- **Status**: {results.get('status', 'Unknown')}

### Question & Answer Rounds:
"""

            for qa in results.get("qa_rounds", []):
                report += f"\n**Round {qa['round']}**: {qa['question']}\n"
                report += f"*Answer*: {qa['answer'][:200]}{'...' if len(qa['answer']) > 200 else ''}\n"

            risks = final.get("identified_risks", [])
            if risks and risks != ["Information not available"]:
                report += "\n## ⚠️ Identified Risks\n"
                for i, risk in enumerate(risks, 1):
                    report += f"{i}. {risk}\n"

            actions = final.get("immediate_actions", [])
            if actions and actions != ["Information not available"]:
                report += "\n## 🚨 Immediate Actions Required\n"
                for i, action in enumerate(actions, 1):
                    report += f"{i}. {action}\n"

            methods = final.get("prevention_methods", [])
            if methods and methods != ["Information not available"]:
                report += "\n## πŸ›‘οΈ Prevention Methods\n"
                for i, method in enumerate(methods, 1):
                    report += f"{i}. {method}\n"

            return report

        except Exception as e:
            return f"# ❌ Error During Analysis\n\n```\n{str(e)}\n```\n\nPlease check your configuration and try again."

    # Create Gradio interface
    iface = gr.Interface(
        fn=analyze_uploaded_image,
        inputs=gr.Image(type="pil", label="Upload Construction Site Image"),
        outputs=gr.Markdown(label="Safety Analysis Report"),
        title="πŸ—οΈ Construction Site Safety Analyzer (Fixed Version)",
        description="Upload a construction site image for comprehensive safety analysis using LLaVA + Llama 3 70B. This version includes improved error handling and JSON parsing.",
        examples=None
    )

    return iface

# ============================================================================
# EXAMPLE USAGE AND TESTING
# ============================================================================

# Cell 8: Test the Fixed System
def test_system():
    """Test the fixed system with better error handling"""
    print("πŸ§ͺ Testing Fixed Construction Safety Analyzer System...")

    # Test 1: Check model loading
    print("βœ… Test 1: Models loaded successfully")
    print(f"   - LLaVA model: {llava_model.model.__class__.__name__}")
    print(f"   - Groq client: {groq_analyzer.client.__class__.__name__}")

    # Test 2: Check API connectivity with better error handling
    try:
        test_response = groq_analyzer.client.chat.completions.create(
            model="llama3-70b-8192",
            messages=[{"role": "user", "content": "Hello, this is a test."}],
            max_tokens=10
        )
        print("βœ… Test 2: Groq API connection successful")
    except Exception as e:
        print(f"❌ Test 2: Groq API connection failed: {e}")
        print("   Please check your API key and internet connection.")

    # Test 3: JSON parsing function
    test_json = '{"action": "QUESTION", "question": "Test question"}'
    result = groq_analyzer.extract_json_from_text(test_json)
    if result and "action" in result:
        print("βœ… Test 3: JSON parsing function working")
    else:
        print("❌ Test 3: JSON parsing function failed")

    print("πŸŽ‰ System test completed!")

# Run system test
test_system()

# Launch Gradio interface
print("πŸš€ Creating Fixed Gradio Interface...")
interface = create_gradio_interface()
interface.launch(share=True, debug=True)

print("""
πŸ—οΈ FIXED CONSTRUCTION SITE SAFETY ANALYZER - READY TO USE!

πŸ”§ IMPROVEMENTS MADE:
- βœ… Fixed JSON parsing errors with robust extraction
- βœ… Added comprehensive error handling
- βœ… Reduced max Q&A rounds to prevent timeouts
- βœ… Added fallback questions for systematic analysis
- βœ… Improved response validation
- βœ… Better error messages and debugging

πŸ“‹ INSTRUCTIONS:
1. Ensure your Groq API key is set correctly
2. Upload a construction site image
3. The system will now handle JSON errors gracefully
4. View comprehensive safety analysis with improved reliability

πŸš€ READY TO ANALYZE CONSTRUCTION SITE SAFETY WITH IMPROVED RELIABILITY!
""")