File size: 2,824 Bytes
6674899
21206fd
6674899
 
 
 
 
 
 
21206fd
6674899
 
 
 
 
 
 
 
 
 
21206fd
6674899
 
 
 
 
 
 
 
 
 
 
21206fd
6674899
 
 
21206fd
6674899
 
 
 
 
 
 
21206fd
6674899
 
21206fd
6674899
 
 
21206fd
6674899
 
21206fd
6674899
 
 
21206fd
6674899
 
 
 
 
 
 
 
 
 
 
 
21206fd
6674899
 
 
 
 
 
 
 
21206fd
6674899
 
 
21206fd
 
 
6674899
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import os
import gradio as gr
from langchain_community.vectorstores import FAISS
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.document_loaders import PyMuPDFLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.chains import RetrievalQA
from langchain_huggingface import HuggingFaceHub
import zipfile

# Extract PDFs from zip file
def extract_pdfs_from_zip(zip_path="data.zip", extract_to="data"):
    if not os.path.exists(zip_path):
        raise FileNotFoundError(f"Zip file '{zip_path}' not found.")
    
    if not os.path.exists(extract_to):
        os.makedirs(extract_to)
    
    with zipfile.ZipFile(zip_path, 'r') as zip_ref:
        zip_ref.extractall(extract_to)

def load_pdfs(directory="data"):
    if not os.path.exists(directory):
        raise FileNotFoundError(f"The directory '{directory}' does not exist.")
    
    raw_documents = []
    for filename in os.listdir(directory):
        if filename.endswith(".pdf"):
            loader = PyMuPDFLoader(os.path.join(directory, filename))
            docs = loader.load()
            raw_documents.extend(docs)
    return raw_documents

def split_documents(documents):
    text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
    return text_splitter.split_documents(documents)

def initialize_qa_system():
    print("πŸ“¦ Extracting PDFs from zip...")
    extract_pdfs_from_zip()
    
    print("πŸ”„ Loading PDFs...")
    raw_docs = load_pdfs()
    print(f"βœ… Loaded {len(raw_docs)} raw documents.")

    if len(raw_docs) == 0:
        raise ValueError("No PDF documents found in the 'data' directory.")

    print("πŸͺ“ Splitting documents into chunks...")
    docs = split_documents(raw_docs)
    print(f"βœ… Split into {len(docs)} chunks.")

    print("🧠 Generating embeddings...")
    embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")

    print("πŸ“¦ Creating FAISS vector store...")
    db = FAISS.from_documents(docs, embeddings)
    print("βœ… Vector store created successfully!")

    print("πŸ€– Initializing LLM...")
    llm = HuggingFaceHub(
        repo_id="google/flan-t5-xxl",
        model_kwargs={"temperature": 0.5, "max_length": 512}
    )
    
    qa = RetrievalQA.from_chain_type(
        llm=llm,
        chain_type="stuff",
        retriever=db.as_retriever(search_kwargs={"k": 3})
    )
    return qa

# Initialize the QA system
qa_system = initialize_qa_system()

def chat_response(message, history):
    response = qa_system({"query": message})
    return response["result"]

# Create Gradio interface
demo = gr.ChatInterface(
    fn=chat_response,
    title="PDF Knowledge Chatbot",
    description="Ask questions about the content in your PDF documents"
)

if __name__ == "__main__":
    demo.launch()