Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -22,7 +22,7 @@ def initialize_system():
|
|
22 |
if f.endswith(".pdf")]
|
23 |
|
24 |
text_splitter = RecursiveCharacterTextSplitter(
|
25 |
-
chunk_size=1000,
|
26 |
chunk_overlap=200
|
27 |
)
|
28 |
|
@@ -41,17 +41,14 @@ def initialize_system():
|
|
41 |
# Vector store
|
42 |
vector_store = FAISS.from_documents(texts, embeddings)
|
43 |
|
44 |
-
# Load model
|
45 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
46 |
-
|
47 |
-
trust_remote_code=True,
|
48 |
-
padding_side="left"
|
49 |
-
)
|
50 |
|
51 |
model = AutoModelForCausalLM.from_pretrained(
|
52 |
MODEL_NAME,
|
53 |
trust_remote_code=True,
|
54 |
-
torch_dtype=torch.float16,
|
55 |
device_map="auto",
|
56 |
low_cpu_mem_usage=True
|
57 |
)
|
@@ -61,7 +58,11 @@ def initialize_system():
|
|
61 |
try:
|
62 |
vector_store, model, tokenizer = initialize_system()
|
63 |
print("β
System initialized successfully")
|
64 |
-
|
|
|
|
|
|
|
|
|
65 |
except Exception as e:
|
66 |
print(f"β Initialization failed: {str(e)}")
|
67 |
raise
|
@@ -71,18 +72,15 @@ def generate_response(query):
|
|
71 |
# Context retrieval
|
72 |
docs = vector_store.similarity_search(query, k=3)
|
73 |
context = "\n".join([d.page_content for d in docs])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
-
|
76 |
-
prompt = f"""<|system|>
|
77 |
-
You are a customer service expert. Answer using:
|
78 |
-
{context}
|
79 |
-
- Be concise (2-3 sentences)
|
80 |
-
- If information is missing: "Let me check with the team"
|
81 |
-
</s>
|
82 |
-
<|user|>{query}</s>
|
83 |
-
<|assistant|>"""
|
84 |
-
|
85 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
86 |
outputs = model.generate(
|
87 |
inputs.input_ids,
|
88 |
max_new_tokens=300,
|
@@ -92,20 +90,21 @@ def generate_response(query):
|
|
92 |
)
|
93 |
|
94 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
95 |
-
return response.split("
|
96 |
|
97 |
except Exception as e:
|
98 |
-
return "
|
99 |
|
100 |
-
#
|
101 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
102 |
-
gr.Markdown("# Enterprise Customer Support")
|
103 |
-
|
104 |
-
|
|
|
105 |
with gr.Row():
|
106 |
msg = gr.Textbox(placeholder="Ask about our services...", scale=7)
|
107 |
submit_btn = gr.Button("Send", variant="primary", scale=1)
|
108 |
-
|
109 |
clear = gr.ClearButton([msg, chatbot])
|
110 |
|
111 |
def respond(message, history):
|
@@ -116,4 +115,4 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
116 |
submit_btn.click(respond, [msg, chatbot], [msg, chatbot])
|
117 |
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
118 |
|
119 |
-
demo.launch(server_port=7860)
|
|
|
22 |
if f.endswith(".pdf")]
|
23 |
|
24 |
text_splitter = RecursiveCharacterTextSplitter(
|
25 |
+
chunk_size=1000,
|
26 |
chunk_overlap=200
|
27 |
)
|
28 |
|
|
|
41 |
# Vector store
|
42 |
vector_store = FAISS.from_documents(texts, embeddings)
|
43 |
|
44 |
+
# Load model and tokenizer
|
45 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
46 |
+
tokenizer.pad_token = tokenizer.eos_token # Fix padding issue
|
|
|
|
|
|
|
47 |
|
48 |
model = AutoModelForCausalLM.from_pretrained(
|
49 |
MODEL_NAME,
|
50 |
trust_remote_code=True,
|
51 |
+
torch_dtype=torch.float32 if not torch.cuda.is_available() else torch.float16,
|
52 |
device_map="auto",
|
53 |
low_cpu_mem_usage=True
|
54 |
)
|
|
|
58 |
try:
|
59 |
vector_store, model, tokenizer = initialize_system()
|
60 |
print("β
System initialized successfully")
|
61 |
+
if torch.cuda.is_available():
|
62 |
+
print("π Using CUDA")
|
63 |
+
print(f"Memory usage: {torch.cuda.memory_allocated()/1024**3:.2f} GB")
|
64 |
+
else:
|
65 |
+
print("π§ Using CPU")
|
66 |
except Exception as e:
|
67 |
print(f"β Initialization failed: {str(e)}")
|
68 |
raise
|
|
|
72 |
# Context retrieval
|
73 |
docs = vector_store.similarity_search(query, k=3)
|
74 |
context = "\n".join([d.page_content for d in docs])
|
75 |
+
|
76 |
+
# Prompt template optimized for Phi-2
|
77 |
+
prompt = f"""Context:
|
78 |
+
{context}
|
79 |
+
|
80 |
+
Question: {query}
|
81 |
+
Answer:"""
|
82 |
|
83 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
outputs = model.generate(
|
85 |
inputs.input_ids,
|
86 |
max_new_tokens=300,
|
|
|
90 |
)
|
91 |
|
92 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
93 |
+
return response.split("Answer:")[-1].strip()
|
94 |
|
95 |
except Exception as e:
|
96 |
+
return "Sorry, an error occurred while generating a response."
|
97 |
|
98 |
+
# Gradio UI
|
99 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
100 |
+
gr.Markdown("# π§ Enterprise Customer Support Chatbot")
|
101 |
+
|
102 |
+
chatbot = gr.Chatbot(height=500, label="Conversation")
|
103 |
+
|
104 |
with gr.Row():
|
105 |
msg = gr.Textbox(placeholder="Ask about our services...", scale=7)
|
106 |
submit_btn = gr.Button("Send", variant="primary", scale=1)
|
107 |
+
|
108 |
clear = gr.ClearButton([msg, chatbot])
|
109 |
|
110 |
def respond(message, history):
|
|
|
115 |
submit_btn.click(respond, [msg, chatbot], [msg, chatbot])
|
116 |
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
117 |
|
118 |
+
demo.launch(server_port=7860)
|