File size: 2,741 Bytes
37b42d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from io import BytesIO
from fastapi import Response
import torch
import time
import litserve as ls
from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderKL
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
from diffusers.pipelines.flux.pipeline_flux import FluxPipeline
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast

class FluxLitAPI(ls.LitAPI):
    def setup(self, device):
        # Load the model
        scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained("black-forest-labs/FLUX.1-schnell", subfolder="scheduler", revision="refs/pr/1")
        text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=torch.bfloat16)
        tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=torch.bfloat16)
        text_encoder_2 = T5EncoderModel.from_pretrained("black-forest-labs/FLUX.1-schnell", subfolder="text_encoder_2", torch_dtype=torch.bfloat16, revision="refs/pr/1")
        tokenizer_2 = T5TokenizerFast.from_pretrained("black-forest-labs/FLUX.1-schnell", subfolder="tokenizer_2", torch_dtype=torch.bfloat16, revision="refs/pr/1")
        vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-schnell", subfolder="vae", torch_dtype=torch.bfloat16, revision="refs/pr/1")
        transformer = FluxTransformer2DModel.from_pretrained("black-forest-labs/FLUX.1-schnell", subfolder="transformer", torch_dtype=torch.bfloat16, revision="refs/pr/1")

        self.pipe = FluxPipeline(
            scheduler=scheduler,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            text_encoder_2=None,
            tokenizer_2=tokenizer_2,
            vae=vae,
            transformer=None,
        )
        self.pipe.text_encoder_2 = text_encoder_2
        self.pipe.transformer = transformer
        self.pipe.enable_model_cpu_offload()
    

    def decode_request(self, request):
        # Extract prompt from request
        prompt = request["prompt"]
        return prompt

    def predict(self, prompt):
        # Generate image from prompt
        image = self.pipe(
            prompt=prompt, 
            width=1024,
            height=1024,
            num_inference_steps=4, 
            generator=torch.Generator().manual_seed(int(time.time())),
            guidance_scale=3.5,
        ).images[0]

        return image

    def encode_response(self, image):
        buffered = BytesIO()
        image.save(buffered, format="PNG")
        return Response(content=buffered.getvalue(), headers={"Content-Type": "image/png"})

if __name__ == "__main__":
    api = FluxLitAPI()
    server = ls.LitServer(api, timeout=False)
    server.run(port=8000)