File size: 44,928 Bytes
faeb953
 
 
 
 
 
223d6e3
 
faeb953
ae38d1c
 
 
 
223d6e3
 
ae38d1c
 
 
 
 
223d6e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae38d1c
 
73e6ea4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae38d1c
 
 
 
 
 
 
 
223d6e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae38d1c
 
 
 
 
223d6e3
 
 
ae38d1c
 
 
223d6e3
 
 
 
ae38d1c
 
 
223d6e3
ae38d1c
 
 
 
223d6e3
 
 
ae38d1c
 
 
 
 
223d6e3
 
 
 
ae38d1c
 
 
 
 
223d6e3
 
 
 
ae38d1c
 
 
 
 
223d6e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae38d1c
223d6e3
 
 
 
 
 
ae38d1c
faeb953
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae38d1c
faeb953
 
 
 
 
 
 
 
223d6e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faeb953
223d6e3
faeb953
 
322597f
faeb953
 
 
 
 
ae38d1c
223d6e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae38d1c
223d6e3
 
 
faeb953
223d6e3
 
 
faeb953
223d6e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae38d1c
223d6e3
 
 
 
 
 
 
 
 
ae38d1c
223d6e3
 
ae38d1c
223d6e3
 
ae38d1c
223d6e3
 
 
 
ae38d1c
223d6e3
 
 
 
 
ae38d1c
223d6e3
 
 
 
ae38d1c
223d6e3
 
 
ae38d1c
223d6e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae38d1c
223d6e3
ae38d1c
 
223d6e3
 
 
 
 
 
 
ae38d1c
223d6e3
 
 
 
ae38d1c
223d6e3
 
 
 
 
 
 
 
 
ae38d1c
223d6e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae38d1c
223d6e3
 
 
 
ae38d1c
223d6e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faeb953
223d6e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae38d1c
223d6e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae38d1c
 
223d6e3
 
 
 
 
 
 
 
 
 
63732ac
 
 
 
223d6e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score, mean_squared_error
from sklearn.model_selection import train_test_split
import scipy.stats as stats
import plotly.express as px
import plotly.graph_objects as go
from pathlib import Path
import os
import re
from plotly.subplots import make_subplots

# Set up the style for all plots
plt.style.use('default')
sns.set_theme(style="whitegrid", palette="husl")

def simple_word_tokenize(text):
    """Simple word tokenization function"""
    # Convert to string and lowercase
    text = str(text).lower()
    # Remove special characters and extra whitespace
    text = re.sub(r'[^\w\s]', ' ', text)
    # Split on whitespace and remove empty strings
    words = [word for word in text.split() if word]
    return words

def simple_sentence_split(text):
    """Simple sentence splitting function"""
    # Convert to string
    text = str(text)
    # Split on common sentence endings
    sentences = re.split(r'[.!?]+', text)
    # Remove empty strings and strip whitespace
    sentences = [s.strip() for s in sentences if s.strip()]
    return sentences

def extract_text_features(text):
    """Extract basic features from text"""
    try:
        # Handle NaN or None values
        if pd.isna(text) or text is None:
            return None  # Return None instead of default values
        
        words = simple_word_tokenize(text)
        sentences = simple_sentence_split(text)
        
        features = {
            'word_count': len(words),
            'sentence_count': len(sentences),
            'avg_word_length': np.mean([len(word) for word in words]) if words else None,
            'avg_sentence_length': len(words) / len(sentences) if sentences else None
        }
        return features
    except Exception as e:
        return None  # Return None if any error occurs

def load_data():
    """Load and prepare the data"""
    # Try multiple possible paths for Hugging Face Spaces compatibility
    import os
    
    # Debug: Print current working directory
    st.write(f"Current working directory: {os.getcwd()}")
    
    # Try different possible data directory paths
    possible_paths = [
        Path("Data"),  # Relative to current working directory
        Path.cwd() / "Data",  # Explicitly relative to current working directory
        Path("/home/user/app/Data"),  # Hugging Face Spaces typical path
        Path("/home/user/Data"),  # Alternative Hugging Face Spaces path
    ]
    
    data_dir = None
    for path in possible_paths:
        st.write(f"Checking path: {path}")
        if path.exists():
            data_dir = path
            st.write(f"Found data directory at: {data_dir}")
            break
    
    if data_dir is None:
        st.error("Could not find Data directory in any of the expected locations")
        return None, None, None, None
    
    # Load the datasets
    try:
        df_reviews = pd.read_csv(data_dir / "reviews.csv")
        df_submissions = pd.read_csv(data_dir / "Submissions.csv")
        df_dec = pd.read_csv(data_dir / "decision.csv")
        df_keyword = pd.read_csv(data_dir / "submission_keyword.csv")
        
        # Clean the data by dropping rows with NaN values in critical columns
        df_reviews = df_reviews.dropna(subset=['review', 'rating_int', 'confidence_int'])
        
        # Extract features
        features = df_reviews['review'].apply(extract_text_features)
        df_features = pd.DataFrame(features.tolist())
        df_reviews = pd.concat([df_reviews, df_features], axis=1)
        
        # Drop any remaining rows with NaN values
        df_reviews = df_reviews.dropna()
        
        # Verify no NaN values remain
        if df_reviews.isna().any().any():
            st.warning("Some NaN values were found and those rows were dropped")
            df_reviews = df_reviews.dropna()
        
        return df_reviews, df_submissions, df_dec, df_keyword
    except FileNotFoundError as e:
        st.error(f"Data files not found. Please make sure the data files are in the correct location: {data_dir}")
        st.error(f"Error details: {str(e)}")
        return None, None, None, None
    except Exception as e:
        st.error(f"Error processing data: {str(e)}")
        return None, None, None, None

def create_feature_plot(df, x_col, y_col, title):
    """Create an interactive scatter plot using plotly"""
    # Ensure no NaN values
    df_plot = df.dropna(subset=[x_col, y_col])
    
    fig = px.scatter(df_plot, x=x_col, y=y_col, 
                    title=title,
                    labels={x_col: x_col.replace('_', ' ').title(),
                           y_col: y_col.replace('_', ' ').title()},
                    template="plotly_dark")
    fig.update_layout(
        title_x=0.5,
        title_font_size=20,
        showlegend=True,
        plot_bgcolor='rgb(30, 30, 30)',
        paper_bgcolor='rgb(30, 30, 30)',
        font=dict(color='white')
    )
    return fig

def create_correlation_heatmap(df, columns):
    """Create a correlation heatmap using plotly"""
    # Ensure no NaN values
    df_corr = df[columns].dropna()
    corr = df_corr.corr()
    
    fig = go.Figure(data=go.Heatmap(
        z=corr,
        x=corr.columns,
        y=corr.columns,
        colorscale='RdBu',
        zmin=-1, zmax=1,
        text=[[f'{val:.2f}' for val in row] for row in corr.values],
        texttemplate='%{text}',
        textfont={"size": 12}
    ))
    fig.update_layout(
        title='Feature Correlation Heatmap',
        title_x=0.5,
        title_font_size=20,
        plot_bgcolor='rgb(30, 30, 30)',
        paper_bgcolor='rgb(30, 30, 30)',
        font=dict(color='white')
    )
    return fig

def create_regression_plot(df, x_col, y_col, title):
    """Create a scatter plot with regression line"""
    # Ensure no NaN values
    df_plot = df.dropna(subset=[x_col, y_col])
    
    fig = px.scatter(df_plot, x=x_col, y=y_col, 
                    title=title,
                    labels={x_col: x_col.replace('_', ' ').title(),
                           y_col: y_col.replace('_', ' ').title()},
                    template="plotly_dark")
    
    # Add regression line
    model = LinearRegression()
    X = df_plot[x_col].values.reshape(-1, 1)
    y = df_plot[y_col].values
    model.fit(X, y)
    y_pred = model.predict(X)
    
    fig.add_trace(go.Scatter(
        x=df_plot[x_col],
        y=y_pred,
        mode='lines',
        name='Regression Line',
        line=dict(color='red', width=2)
    ))
    
    fig.update_layout(
        title_x=0.5,
        title_font_size=20,
        showlegend=True,
        plot_bgcolor='rgb(30, 30, 30)',
        paper_bgcolor='rgb(30, 30, 30)',
        font=dict(color='white')
    )
    return fig, model

def create_correlation_examples():
    """Create example plots showing different correlation types"""
    # Generate example data
    np.random.seed(42)
    n_points = 100
    
    # Perfect positive correlation
    x1 = np.linspace(0, 10, n_points)
    y1 = x1 + np.random.normal(0, 0.1, n_points)
    
    # Perfect negative correlation
    x2 = np.linspace(0, 10, n_points)
    y2 = -x2 + np.random.normal(0, 0.1, n_points)
    
    # Low correlation
    x3 = np.random.normal(5, 2, n_points)
    y3 = np.random.normal(5, 2, n_points)
    
    # Create subplots
    fig = make_subplots(rows=1, cols=3,
                       subplot_titles=('Perfect Positive Correlation (r ≈ 1)',
                                     'Perfect Negative Correlation (r ≈ -1)',
                                     'Low Correlation (r ≈ 0)'))
    
    # Add traces
    fig.add_trace(go.Scatter(x=x1, y=y1, mode='markers', name='r ≈ 1'),
                 row=1, col=1)
    fig.add_trace(go.Scatter(x=x2, y=y2, mode='markers', name='r ≈ -1'),
                 row=1, col=2)
    fig.add_trace(go.Scatter(x=x3, y=y3, mode='markers', name='r ≈ 0'),
                 row=1, col=3)
    
    # Update layout
    fig.update_layout(
        height=400,
        showlegend=False,
        template="plotly_dark",
        plot_bgcolor='rgb(30, 30, 30)',
        paper_bgcolor='rgb(30, 30, 30)',
        font=dict(color='white', size=14),
        title=dict(
            text='Examples of Different Correlation Types',
            x=0.5,
            y=0.95,
            font=dict(size=20)
        )
    )
    
    # Update axes
    for i in range(1, 4):
        fig.update_xaxes(title_text='X', row=1, col=i)
        fig.update_yaxes(title_text='Y', row=1, col=i)
    
    return fig

def show():
    st.title("Week 5: Introduction to Machine Learning and Linear Regression")
    
    # Introduction Section
    st.header("Course Overview")
    st.write("""
    In this week, we'll explore machine learning through a fascinating real-world challenge: The Academic Publishing Crisis.
    
    Imagine you're the program chair for a prestigious AI conference. You've just received 5,000 paper submissions, and you need to:
    - Decide which papers to accept (only 20% can be accepted)
    - Ensure fair and consistent reviews
    - Understand what makes reviewers confident in their assessments
    
    The Problem: Human reviewers are inconsistent. Some are harsh, others lenient. Some write detailed reviews, others just a few sentences. 
    How can we use data to understand and improve this process?
    
    **Your Mission: Build a machine learning system to analyze review patterns and predict paper acceptance!**
    """)
    
    # Learning Path
    st.subheader("Key Concepts You'll Learn")
    st.write("""
    1. **Linear Regression (线性回归):**
       - Definition: A statistical method that models the relationship between a dependent variable and one or more independent variables
       - Real-world example: Predicting house prices based on size and location
    
    2. **Correlation Analysis (相关性分析):**
       - Definition: Statistical measure that shows how strongly two variables are related
       - Range: -1 (perfect negative correlation) to +1 (perfect positive correlation)
    """)
    
    # Add correlation examples
    st.write("Here are examples of different correlation types:")
    corr_examples = create_correlation_examples()
    st.plotly_chart(corr_examples, use_container_width=True)
    
    # Show example code for correlation analysis
    with st.expander("Example Code: Correlation Analysis"):
        st.code("""
# Example: Calculating and visualizing correlations
import numpy as np
import pandas as pd
import plotly.graph_objects as go
from plotly.subplots import make_subplots

# Generate example data
np.random.seed(42)
n_points = 100

# Perfect positive correlation
x1 = np.linspace(0, 10, n_points)
y1 = x1 + np.random.normal(0, 0.1, n_points)

# Perfect negative correlation
x2 = np.linspace(0, 10, n_points)
y2 = -x2 + np.random.normal(0, 0.1, n_points)

# Low correlation
x3 = np.random.normal(5, 2, n_points)
y3 = np.random.normal(5, 2, n_points)

# Calculate correlations
corr1 = np.corrcoef(x1, y1)[0,1]  # Should be close to 1
corr2 = np.corrcoef(x2, y2)[0,1]  # Should be close to -1
corr3 = np.corrcoef(x3, y3)[0,1]  # Should be close to 0

print(f"Correlation 1: {corr1:.3f}")
print(f"Correlation 2: {corr2:.3f}")
print(f"Correlation 3: {corr3:.3f}")
        """)
    
    st.write("""
    3. **Reading Linear Regression Output (解读线性回归结果):**
       - R-squared (R²): Proportion of variance explained by the model (0-1)
       - p-value: It represents the probability of observing results at least as extreme as the ones seen in the study, assuming the null hypothesis is true. Essentially, it's the likelihood of getting the observed outcome (or a more extreme one) if there's actually no real effect or relationship being studied
       - Coefficients (系数): How much the dependent variable changes with a one-unit change in the independent variable
       - Standard errors: Uncertainty in coefficient estimates
       - Confidence intervals: Range where true coefficient likely lies
    """)

    # Load the data
    df_reviews, df_submissions, df_dec, df_keyword = load_data()
    
    if df_reviews is not None:
        try:
            # Module 1: Data Exploration
            st.header("Module 1: Data Exploration")
            st.write("Let's explore our dataset to understand the review patterns:")
            
            # Show example code for data loading and cleaning
            with st.expander("Example Code: Data Loading and Cleaning"):
                st.code("""
# Load and clean the data
import pandas as pd
import numpy as np

def load_and_clean_data():
    # Load datasets
    df_reviews = pd.read_csv('reviews.csv')
    df_submissions = pd.read_csv('Submissions.csv')
    df_dec = pd.read_csv('decision.csv')
    df_keyword = pd.read_csv('submission_keyword.csv')
    
    # Clean reviews data
    df_reviews = df_reviews.dropna(subset=['review', 'rating_int', 'confidence_int'])
    
    # Extract text features
    def extract_text_features(text):
        if pd.isna(text) or text is None:
            return {
                'word_count': 0,
                'sentence_count': 0,
                'avg_word_length': 0,
                'avg_sentence_length': 0
            }
        
        # Convert to string and clean
        text = str(text).lower()
        text = re.sub(r'[^\\w\\s]', ' ', text)
        
        # Split into words and sentences
        words = [word for word in text.split() if word]
        sentences = [s.strip() for s in re.split(r'[.!?]+', text) if s.strip()]
        
        return {
            'word_count': len(words),
            'sentence_count': len(sentences),
            'avg_word_length': np.mean([len(word) for word in words]) if words else 0,
            'avg_sentence_length': len(words) / len(sentences) if sentences else 0
        }
    
    # Apply feature extraction
    features = df_reviews['review'].apply(extract_text_features)
    df_features = pd.DataFrame(features.tolist())
    df_reviews = pd.concat([df_reviews, df_features], axis=1)
    
    # Fill any remaining NaN values
    df_reviews = df_reviews.fillna(0)
    
    return df_reviews, df_submissions, df_dec, df_keyword
                """)
            
            # Verify data quality
            st.subheader("Data Quality Check")
            missing_data = df_reviews.isna().sum()
            if missing_data.any():
                st.warning("Missing values found in the dataset:")
                st.write(missing_data[missing_data > 0])
            
            # Show basic statistics
            col1, col2 = st.columns(2)
            with col1:
                st.metric("Total Reviews", len(df_reviews))
                st.metric("Average Rating", f"{df_reviews['rating_int'].mean():.2f}")
            with col2:
                st.metric("Average Word Count", f"{df_reviews['word_count'].mean():.0f}")
                st.metric("Average Confidence", f"{df_reviews['confidence_int'].mean():.2f}")
            
            # Interactive feature selection
            st.subheader("Interactive Feature Analysis")
            feature_cols = ['word_count', 'sentence_count', 'avg_word_length', 
                          'avg_sentence_length', 'rating_int', 'confidence_int']
            
            col1, col2 = st.columns(2)
            with col1:
                x_feature = st.selectbox("Select X-axis feature:", feature_cols)
            with col2:
                y_feature = st.selectbox("Select Y-axis feature:", feature_cols)
            
            # Create interactive plot
            fig = create_feature_plot(df_reviews, x_feature, y_feature,
                                   f'{x_feature.replace("_", " ").title()} vs {y_feature.replace("_", " ").title()}')
            st.plotly_chart(fig, use_container_width=True)
            
            # Show correlation between selected features
            corr = df_reviews[[x_feature, y_feature]].corr().iloc[0,1]
            st.write(f"Correlation between {x_feature} and {y_feature}: {corr:.3f}")
            
            # Distribution plots
            st.subheader("Distribution of Ratings and Confidence")
            col1, col2 = st.columns(2)
            with col1:
                fig = px.histogram(df_reviews.dropna(subset=['rating_int']), 
                                 x='rating_int', 
                                 title='Distribution of Ratings',
                                 template="plotly_dark")
                st.plotly_chart(fig, use_container_width=True)
            with col2:
                fig = px.histogram(df_reviews.dropna(subset=['confidence_int']), 
                                 x='confidence_int',
                                 title='Distribution of Confidence',
                                 template="plotly_dark")
                st.plotly_chart(fig, use_container_width=True)
            
            # Show example code for distribution analysis
            with st.expander("Example Code: Distribution Analysis"):
                st.code("""
# Analyze distributions of numerical features
import plotly.express as px

def analyze_distributions(df):
    # Create histograms for key features
    fig1 = px.histogram(df, x='rating_int', 
                       title='Distribution of Ratings',
                       template="plotly_dark")
    
    fig2 = px.histogram(df, x='confidence_int',
                       title='Distribution of Confidence',
                       template="plotly_dark")
    
    # Calculate summary statistics
    stats = df[['rating_int', 'confidence_int']].describe()
    
    return fig1, fig2, stats

# Usage
fig1, fig2, stats = analyze_distributions(df_reviews)
print(stats)
                """)
            
            # Text feature distributions
            st.subheader("Text Feature Distributions")
            col1, col2 = st.columns(2)
            with col1:
                fig = px.histogram(df_reviews.dropna(subset=['avg_word_length']), 
                                 x='avg_word_length',
                                 title='Average Word Length Distribution',
                                 template="plotly_dark")
                st.plotly_chart(fig, use_container_width=True)
            with col2:
                fig = px.histogram(df_reviews.dropna(subset=['avg_sentence_length']), 
                                 x='avg_sentence_length',
                                 title='Average Sentence Length Distribution',
                                 template="plotly_dark")
                st.plotly_chart(fig, use_container_width=True)
            
            # Correlation analysis
            st.subheader("Feature Correlations")
            corr_fig = create_correlation_heatmap(df_reviews, feature_cols)
            st.plotly_chart(corr_fig, use_container_width=True)
            
            # Show example code for correlation analysis
            with st.expander("Example Code: Correlation Analysis"):
                st.code("""
# Analyze correlations between features
import plotly.graph_objects as go

def analyze_correlations(df, columns):
    # Calculate correlation matrix
    corr = df[columns].corr()
    
    # Create heatmap
    fig = go.Figure(data=go.Heatmap(
        z=corr,
        x=corr.columns,
        y=corr.columns,
        colorscale='RdBu',
        zmin=-1, zmax=1,
        text=[[f'{val:.2f}' for val in row] for row in corr.values],
        texttemplate='%{text}',
        textfont={"size": 12}
    ))
    
    fig.update_layout(
        title='Feature Correlation Heatmap',
        template="plotly_dark"
    )
    
    return fig, corr

# Usage
fig, corr_matrix = analyze_correlations(df_reviews, feature_cols)
print(corr_matrix)
                """)
            
            # Module 2: Simple Linear Regression
            st.header("Module 2: Simple Linear Regression")
            st.write("""
            Let's explore the relationship between review length and rating using simple linear regression.
            """)
            
            # Interactive feature selection for regression
            st.subheader("Interactive Regression Analysis")
            col1, col2 = st.columns(2)
            with col1:
                x_reg = st.selectbox("Select feature for X-axis:", feature_cols)
            with col2:
                y_reg = st.selectbox("Select target variable:", feature_cols)
            
            # Create regression plot
            fig, model = create_regression_plot(df_reviews, x_reg, y_reg,
                                             f'{x_reg.replace("_", " ").title()} vs {y_reg.replace("_", " ").title()}')
            st.plotly_chart(fig, use_container_width=True)
            
            # Show regression metrics
            st.subheader("Regression Metrics")
            col1, col2 = st.columns(2)
            with col1:
                r2_score = model.score(df_reviews[[x_reg]].dropna(), 
                                     df_reviews[y_reg].dropna())
                st.metric("R-squared", f"{r2_score:.3f}")
            with col2:
                st.metric("Slope", f"{model.coef_[0]:.3f}")
            
            # Show example code for simple linear regression
            with st.expander("Example Code: Simple Linear Regression"):
                st.code('''
# Perform simple linear regression
from sklearn.linear_model import LinearRegression
import plotly.graph_objects as go

def simple_linear_regression(df, x_col, y_col, title=None):
    """
    Perform simple linear regression on any DataFrame.
    
    Parameters:
    -----------
    df : pandas.DataFrame
        Input DataFrame containing the features
    x_col : str
        Name of the column to use as independent variable
    y_col : str
        Name of the column to use as dependent variable
    title : str, optional
        Title for the plot. If None, will use column names
    
    Returns:
    --------
    tuple
        (model, r2_score, fig) where:
        - model is the fitted LinearRegression object
        - r2_score is the R-squared value
        - fig is the plotly figure object
    """
    # Handle missing values by dropping them
    df_clean = df.dropna(subset=[x_col, y_col])
    
    if len(df_clean) == 0:
        raise ValueError("No valid data points after removing missing values")
    
    # Prepare data
    X = df_clean[[x_col]]
    y = df_clean[y_col]
    
    # Fit model
    model = LinearRegression()
    model.fit(X, y)
    
    # Calculate R-squared
    r2_score = model.score(X, y)
    
    # Create visualization
    fig = go.Figure()
    
    # Add scatter plot
    fig.add_trace(go.Scatter(
        x=X[x_col],
        y=y,
        mode='markers',
        name='Data Points',
        marker=dict(size=8, opacity=0.6)
    ))
    
    # Add regression line
    x_range = np.linspace(X[x_col].min(), X[x_col].max(), 100)
    y_pred = model.predict(x_range.reshape(-1, 1))
    
    fig.add_trace(go.Scatter(
        x=x_range,
        y=y_pred,
        mode='lines',
        name='Regression Line',
        line=dict(color='red', width=2)
    ))
    
    # Update layout
    title = title or f'{x_col} vs {y_col}'
    fig.update_layout(
        title=title,
        xaxis_title=x_col,
        yaxis_title=y_col,
        template="plotly_dark",
        showlegend=True
    )
    
    return model, r2_score, fig

# Usage
fig, model = simple_linear_regression(df_reviews, 'word_count', 'rating_int')
print(f"R-squared: {model.score(X, y):.3f}")
print(f"Slope: {model.coef_[0]:.3f}")
''')
            
            # Module 3: Multiple Linear Regression
            st.header("Module 3: Multiple Linear Regression")
            st.write("""
            Now let's build a more complex model using multiple features to predict ratings.
            """)
            
            try:
                # Prepare data for modeling
                feature_cols = ['word_count', 'sentence_count', 
                              'avg_word_length', 'avg_sentence_length',
                              'confidence_int']
                
                # Interactive feature selection for multiple regression
                st.subheader("Select Features for Multiple Regression")
                selected_features = st.multiselect(
                    "Choose features to include in the model:",
                    feature_cols,
                    default=feature_cols
                )
                
                if selected_features:
                    # Ensure no NaN values in features
                    df_model = df_reviews.dropna(subset=selected_features + ['rating_int'])
                    
                    X = df_model[selected_features]
                    y = df_model['rating_int']
                    
                    # Split data
                    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
                    
                    # Fit regression model
                    model = LinearRegression()
                    model.fit(X_train, y_train)
                    
                    # Create 3D visualization if exactly 2 features are selected
                    if len(selected_features) == 2:
                        st.subheader("3D Visualization of Selected Features")
                        fig = px.scatter_3d(df_model.sample(min(1000, len(df_model))), 
                                        x=selected_features[0], 
                                        y=selected_features[1], 
                                        z='rating_int',
                                        title='Review Features in 3D Space',
                                        template="plotly_dark")
                        fig.update_layout(
                            title_x=0.5,
                            title_font_size=20,
                            scene = dict(
                                xaxis_title=selected_features[0].replace('_', ' ').title(),
                                yaxis_title=selected_features[1].replace('_', ' ').title(),
                                zaxis_title='Rating'
                            )
                        )
                        st.plotly_chart(fig, use_container_width=True)
                    
                    # Show model metrics
                    st.subheader("Model Performance")
                    col1, col2, col3 = st.columns(3)
                    with col1:
                        st.metric("Training R²", f"{model.score(X_train, y_train):.3f}")
                    with col2:
                        st.metric("Testing R²", f"{model.score(X_test, y_test):.3f}")
                    with col3:
                        st.metric("RMSE", f"{np.sqrt(mean_squared_error(y_test, model.predict(X_test))):.3f}")
                    
                    # Show coefficients
                    st.subheader("Model Coefficients")
                    coef_df = pd.DataFrame({
                        'Feature': X.columns,
                        'Coefficient': model.coef_
                    })
                    st.dataframe(coef_df)
                    
                    # Show example code for multiple linear regression
                    with st.expander("Example Code: Multiple Linear Regression"):
                        st.code('''
# Perform multiple linear regression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error

def multiple_linear_regression(df, feature_cols, target_col, test_size=0.2, random_state=42):
    """
    Perform multiple linear regression on any DataFrame.
    
    Parameters:
    -----------
    df : pandas.DataFrame
        Input DataFrame containing the features
    feature_cols : list of str
        Names of the columns to use as independent variables
    target_col : str
        Name of the column to use as dependent variable
    test_size : float, optional
        Proportion of data to use for testing
    random_state : int, optional
        Random seed for reproducibility
    
    Returns:
    --------
    tuple
        (model, metrics, coef_df, fig) where:
        - model is the fitted LinearRegression object
        - metrics is a dictionary of performance metrics
        - coef_df is a DataFrame of feature coefficients
        - fig is the plotly figure object (if 2 features selected)
    """
    # Handle missing values by dropping them
    df_clean = df.dropna(subset=feature_cols + [target_col])
    
    if len(df_clean) == 0:
        raise ValueError("No valid data points after removing missing values")
    
    # Prepare data
    X = df_clean[feature_cols]
    y = df_clean[target_col]
    
    # Split data
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=test_size, random_state=random_state)
    
    # Fit model
    model = LinearRegression()
    model.fit(X_train, y_train)
    
    # Make predictions
    y_train_pred = model.predict(X_train)
    y_test_pred = model.predict(X_test)
    
    # Calculate metrics
    metrics = {
        'train_r2': r2_score(y_train, y_train_pred),
        'test_r2': r2_score(y_test, y_test_pred),
        'train_rmse': np.sqrt(mean_squared_error(y_train, y_train_pred)),
        'test_rmse': np.sqrt(mean_squared_error(y_test, y_test_pred))
    }
    
    # Create coefficient DataFrame
    coef_df = pd.DataFrame({
        'Feature': feature_cols,
        'Coefficient': model.coef_,
        'Absolute_Impact': np.abs(model.coef_)
    }).sort_values('Absolute_Impact', ascending=False)
    
    # Create visualization if exactly 2 features are selected
    fig = None
    if len(feature_cols) == 2:
        fig = px.scatter_3d(
            df_clean.sample(min(1000, len(df_clean))),
            x=feature_cols[0],
            y=feature_cols[1],
            z=target_col,
            title=f'Relationship between {feature_cols[0]}, {feature_cols[1]}, and {target_col}',
            template="plotly_dark"
        )
        
        # Add regression plane
        x_range = np.linspace(df_clean[feature_cols[0]].min(), df_clean[feature_cols[0]].max(), 20)
        y_range = np.linspace(df_clean[feature_cols[1]].min(), df_clean[feature_cols[1]].max(), 20)
        x_grid, y_grid = np.meshgrid(x_range, y_range)
        
        z_grid = (model.intercept_ +
                 model.coef_[0] * x_grid +
                 model.coef_[1] * y_grid)
        
        fig.add_trace(go.Surface(
            x=x_grid,
            y=y_grid,
            z=z_grid,
            opacity=0.5,
            showscale=False
        ))
    
    return model, metrics, coef_df, fig

# Usage
model, train_score, test_score, rmse, coef_df = multiple_linear_regression(
    df_reviews, 
    ['word_count', 'sentence_count', 'confidence_int'],
    'rating_int'
)
print(f"Training R²: {train_score:.3f}")
print(f"Testing R²: {test_score:.3f}")
print(f"RMSE: {rmse:.3f}")
print(coef_df)
''')
                
            except Exception as e:
                st.error(f"Error in model training: {str(e)}")
                st.write("Please check the data quality and try again.")
        
        except Exception as e:
            st.error(f"Error in data processing: {str(e)}")
            st.write("Please check the data format and try again.")

    # Practice Exercises
    st.header("Practice Exercises")
    
    # Add new section for writing prompts
    st.subheader("Writing Prompts for Analyzing Linear Regression Results")
    st.write("""
    Use these prompts to help you interpret and write about your linear regression results:
    
    1. **Model Fit and R-squared:**
       - "The model explains [R² value]% of the variance in [dependent variable], suggesting [strong/moderate/weak] predictive power."
       - "With an R-squared of [value], we can conclude that [interpretation of model fit]."
       - "The relatively [high/low] R-squared value indicates that [interpretation of model's explanatory power]."
    
    2. **Statistical Significance and p-values:**
       - "The p-value of [value] for [feature] suggests that this relationship is [statistically significant/not significant]."
       - "Given the p-value of [value], we [can/cannot] reject the null hypothesis that [interpretation]."
       - "The statistical significance (p = [value]) indicates that [interpretation of relationship]."
    
    3. **Coefficients and Their Meaning:**
       - "For each unit increase in [independent variable], [dependent variable] [increases/decreases] by [coefficient value] units."
       - "The coefficient of [value] for [feature] suggests that [interpretation of relationship]."
       - "The positive/negative coefficient indicates that [interpretation of direction of relationship]."
    
    4. **Uncertainty and Standard Errors:**
       - "The standard error of [value] for [feature] indicates [interpretation of precision]."
       - "The relatively [small/large] standard error suggests that [interpretation of estimate reliability]."
       - "The uncertainty in our coefficient estimates, as shown by the standard errors, [interpretation of confidence in results]."
    
    5. **Confidence Intervals:**
       - "We are 95% confident that the true coefficient for [feature] lies between [lower bound] and [upper bound]."
       - "The confidence interval [includes/does not include] zero, suggesting that [interpretation of significance]."
       - "The narrow/wide confidence interval indicates [interpretation of precision]."
    
    6. **Practical Significance:**
       - "While the relationship is statistically significant, the effect size of [value] suggests [interpretation of practical importance]."
       - "The coefficient of [value] indicates that [interpretation of real-world impact]."
       - "In practical terms, this means that [interpretation of practical implications]."
    
    7. **Model Limitations:**
       - "The model's assumptions of [assumptions] may not hold in this case because [explanation]."
       - "Potential limitations of our analysis include [list limitations]."
       - "We should be cautious in interpreting these results because [explanation of limitations]."
    
    8. **Recommendations:**
       - "Based on our analysis, we recommend [specific action] because [explanation]."
       - "The results suggest that [interpretation] and therefore [recommendation]."
       - "To improve the model, we could [suggestions for improvement]."
    """)
    
    with st.expander("Exercise 1: Simple Linear Regression"):
        st.write("""
        1. Create a function that performs simple linear regression on any DataFrame
        2. The function should:
           - Take a DataFrame and column names as input
           - Handle missing values appropriately
           - Calculate and return R-squared value
           - Create a visualization of the relationship
        3. Test your function with different features from the dataset
        """)
        
        st.code('''
# Solution: Generic Simple Linear Regression Function
import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
import plotly.express as px
import plotly.graph_objects as go

def simple_linear_regression(df, x_col, y_col, title=None):
    """
    Perform simple linear regression on any DataFrame.
    
    Parameters:
    -----------
    df : pandas.DataFrame
        Input DataFrame containing the features
    x_col : str
        Name of the column to use as independent variable
    y_col : str
        Name of the column to use as dependent variable
    title : str, optional
        Title for the plot. If None, will use column names
    
    Returns:
    --------
    tuple
        (model, r2_score, fig) where:
        - model is the fitted LinearRegression object
        - r2_score is the R-squared value
        - fig is the plotly figure object
    """
    # Handle missing values by dropping them
    df_clean = df.dropna(subset=[x_col, y_col])
    
    if len(df_clean) == 0:
        raise ValueError("No valid data points after removing missing values")
    
    # Prepare data
    X = df_clean[[x_col]]
    y = df_clean[y_col]
    
    # Fit model
    model = LinearRegression()
    model.fit(X, y)
    
    # Calculate R-squared
    r2_score = model.score(X, y)
    
    # Create visualization
    fig = go.Figure()
    
    # Add scatter plot
    fig.add_trace(go.Scatter(
        x=X[x_col],
        y=y,
        mode='markers',
        name='Data Points',
        marker=dict(size=8, opacity=0.6)
    ))
    
    # Add regression line
    x_range = np.linspace(X[x_col].min(), X[x_col].max(), 100)
    y_pred = model.predict(x_range.reshape(-1, 1))
    
    fig.add_trace(go.Scatter(
        x=x_range,
        y=y_pred,
        mode='lines',
        name='Regression Line',
        line=dict(color='red', width=2)
    ))
    
    # Update layout
    title = title or f'{x_col} vs {y_col}'
    fig.update_layout(
        title=title,
        xaxis_title=x_col,
        yaxis_title=y_col,
        template="plotly_dark",
        showlegend=True
    )
    
    return model, r2_score, fig

# Example usage:
# Load your data
df = pd.read_csv('your_data.csv')

# Try different feature pairs
feature_pairs = [
    ('word_count', 'rating_int'),
    ('confidence_int', 'rating_int'),
    ('avg_word_length', 'rating_int')
]

# Analyze each pair
for x_col, y_col in feature_pairs:
    try:
        model, r2, fig = simple_linear_regression(df, x_col, y_col)
        print(f"\nAnalysis of {x_col} vs {y_col}:")
        print(f"R-squared: {r2:.3f}")
        print(f"Slope: {model.coef_[0]:.3f}")
        print(f"Intercept: {model.intercept_:.3f}")
        fig.show()
    except Exception as e:
        print(f"Error analyzing {x_col} vs {y_col}: {str(e)}")
''')
    
    with st.expander("Exercise 2: Multiple Linear Regression"):
        st.write("""
        1. Create a function that performs multiple linear regression on any DataFrame
        2. The function should:
           - Take a DataFrame and lists of feature columns as input
           - Handle missing values appropriately
           - Split data into training and test sets
           - Calculate and return performance metrics
           - Create visualizations of the results
        3. Test your function with different combinations of features
        """)
        
        st.code('''
# Solution: Generic Multiple Linear Regression Function
import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
import plotly.express as px
import plotly.graph_objects as go

def multiple_linear_regression(df, feature_cols, target_col, test_size=0.2, random_state=42):
    """
    Perform multiple linear regression on any DataFrame.
    
    Parameters:
    -----------
    df : pandas.DataFrame
        Input DataFrame containing the features
    feature_cols : list of str
        Names of the columns to use as independent variables
    target_col : str
        Name of the column to use as dependent variable
    test_size : float, optional
        Proportion of data to use for testing
    random_state : int, optional
        Random seed for reproducibility
    
    Returns:
    --------
    tuple
        (model, metrics, coef_df, fig) where:
        - model is the fitted LinearRegression object
        - metrics is a dictionary of performance metrics
        - coef_df is a DataFrame of feature coefficients
        - fig is the plotly figure object (if 2 features selected)
    """
    # Handle missing values by dropping them
    df_clean = df.dropna(subset=feature_cols + [target_col])
    
    if len(df_clean) == 0:
        raise ValueError("No valid data points after removing missing values")
    
    # Prepare data
    X = df_clean[feature_cols]
    y = df_clean[target_col]
    
    # Split data
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=test_size, random_state=random_state)
    
    # Fit model
    model = LinearRegression()
    model.fit(X_train, y_train)
    
    # Make predictions
    y_train_pred = model.predict(X_train)
    y_test_pred = model.predict(X_test)
    
    # Calculate metrics
    metrics = {
        'train_r2': r2_score(y_train, y_train_pred),
        'test_r2': r2_score(y_test, y_test_pred),
        'train_rmse': np.sqrt(mean_squared_error(y_train, y_train_pred)),
        'test_rmse': np.sqrt(mean_squared_error(y_test, y_test_pred))
    }
    
    # Create coefficient DataFrame
    coef_df = pd.DataFrame({
        'Feature': feature_cols,
        'Coefficient': model.coef_,
        'Absolute_Impact': np.abs(model.coef_)
    }).sort_values('Absolute_Impact', ascending=False)
    
    # Create visualization if exactly 2 features are selected
    fig = None
    if len(feature_cols) == 2:
        fig = px.scatter_3d(
            df_clean.sample(min(1000, len(df_clean))),
            x=feature_cols[0],
            y=feature_cols[1],
            z=target_col,
            title=f'Relationship between {feature_cols[0]}, {feature_cols[1]}, and {target_col}',
            template="plotly_dark"
        )
        
        # Add regression plane
        x_range = np.linspace(df_clean[feature_cols[0]].min(), df_clean[feature_cols[0]].max(), 20)
        y_range = np.linspace(df_clean[feature_cols[1]].min(), df_clean[feature_cols[1]].max(), 20)
        x_grid, y_grid = np.meshgrid(x_range, y_range)
        
        z_grid = (model.intercept_ +
                 model.coef_[0] * x_grid +
                 model.coef_[1] * y_grid)
        
        fig.add_trace(go.Surface(
            x=x_grid,
            y=y_grid,
            z=z_grid,
            opacity=0.5,
            showscale=False
        ))
    
    return model, metrics, coef_df, fig

# Example usage:
# Load your data
df = pd.read_csv('your_data.csv')

# Define feature sets to try
feature_sets = [
    ['word_count', 'confidence_int'],
    ['word_count', 'sentence_count', 'confidence_int'],
    ['word_count', 'sentence_count', 'avg_word_length', 'avg_sentence_length', 'confidence_int']
]

# Analyze each feature set
for features in feature_sets:
    try:
        print(f"\nAnalyzing features: {features}")
        model, metrics, coef_df, fig = multiple_linear_regression(
            df, features, 'rating_int')
        
        # Print metrics
        print("\nPerformance Metrics:")
        for metric, value in metrics.items():
            print(f"{metric}: {value:.3f}")
        
        # Print coefficients
        print("\nFeature Coefficients:")
        print(coef_df)
        
        # Show visualization if available
        if fig is not None:
            fig.show()
            
    except Exception as e:
        print(f"Error analyzing features {features}: {str(e)}")
''')

    # Weekly Assignment
    username = st.session_state.get("username", "Student")
    st.header(f"{username}'s Weekly Assignment")
    
    if username == "manxiii":
        st.markdown("""
        Hello **manxiii**, here is your Assignment 5: Machine Learning Analysis.
        1. Pick out some figures from the Colab Notebook and write a short summary of the results. Add them to your overleaf paper
                    - Colab [Link](https://colab.research.google.com/drive/1ScwSa8WBcOMCloXsTV5TPFoVrcPHXlW2#scrollTo=VDMRGRbSR0gc)
                    - Overleaf [Link](https://www.overleaf.com/project/68228f4ccb9d18d92c26ba13)
        2. Update your literature review section in the overleaf paper, given the homework.

        **Due Date:** End of Week 5
        """)
    elif username == "zhu":
        st.markdown("""
        Hello **zhu**, here is your Assignment 5: Machine Learning Analysis.
        1. Implement the complete machine learning workflow
        2. Create insightful visualizations of model results
        3. Draw conclusions from your analysis
        4. Submit your work in a Jupyter notebook

        **Due Date:** End of Week 5
        """)
    elif username == "WK":
        st.markdown("""
        Hello **WK**, here is your Assignment 5: Machine Learning Analysis.
        1. Complete the feature engineering pipeline
        2. Build and evaluate linear regression models
        3. Analyze patterns in the data
        4. Submit your findings

        **Due Date:** End of Week 5
        """)
    else:
        st.markdown(f"""
        Hello **{username}**, here is your Assignment 5: Machine Learning Analysis.
        1. Complete the feature engineering pipeline
        2. Build and evaluate linear regression models
        3. Analyze patterns in the data
        4. Submit your findings

        **Due Date:** End of Week 5
        """)