Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
from sklearn.linear_model import LinearRegression | |
from sklearn.metrics import r2_score, mean_squared_error | |
from sklearn.model_selection import train_test_split | |
import scipy.stats as stats | |
import plotly.express as px | |
import plotly.graph_objects as go | |
from pathlib import Path | |
import os | |
import re | |
from plotly.subplots import make_subplots | |
# Set up the style for all plots | |
plt.style.use('default') | |
sns.set_theme(style="whitegrid", palette="husl") | |
def simple_word_tokenize(text): | |
"""Simple word tokenization function""" | |
# Convert to string and lowercase | |
text = str(text).lower() | |
# Remove special characters and extra whitespace | |
text = re.sub(r'[^\w\s]', ' ', text) | |
# Split on whitespace and remove empty strings | |
words = [word for word in text.split() if word] | |
return words | |
def simple_sentence_split(text): | |
"""Simple sentence splitting function""" | |
# Convert to string | |
text = str(text) | |
# Split on common sentence endings | |
sentences = re.split(r'[.!?]+', text) | |
# Remove empty strings and strip whitespace | |
sentences = [s.strip() for s in sentences if s.strip()] | |
return sentences | |
def extract_text_features(text): | |
"""Extract basic features from text""" | |
try: | |
# Handle NaN or None values | |
if pd.isna(text) or text is None: | |
return None # Return None instead of default values | |
words = simple_word_tokenize(text) | |
sentences = simple_sentence_split(text) | |
features = { | |
'word_count': len(words), | |
'sentence_count': len(sentences), | |
'avg_word_length': np.mean([len(word) for word in words]) if words else None, | |
'avg_sentence_length': len(words) / len(sentences) if sentences else None | |
} | |
return features | |
except Exception as e: | |
return None # Return None if any error occurs | |
def load_data(): | |
"""Load and prepare the data""" | |
# Try multiple possible paths for Hugging Face Spaces compatibility | |
import os | |
# Debug: Print current working directory | |
st.write(f"Current working directory: {os.getcwd()}") | |
# Try different possible data directory paths | |
possible_paths = [ | |
Path("Data"), # Relative to current working directory | |
Path.cwd() / "Data", # Explicitly relative to current working directory | |
Path("/home/user/app/Data"), # Hugging Face Spaces typical path | |
Path("/home/user/Data"), # Alternative Hugging Face Spaces path | |
] | |
data_dir = None | |
for path in possible_paths: | |
st.write(f"Checking path: {path}") | |
if path.exists(): | |
data_dir = path | |
st.write(f"Found data directory at: {data_dir}") | |
break | |
if data_dir is None: | |
st.error("Could not find Data directory in any of the expected locations") | |
return None, None, None, None | |
# Load the datasets | |
try: | |
df_reviews = pd.read_csv(data_dir / "reviews.csv") | |
df_submissions = pd.read_csv(data_dir / "Submissions.csv") | |
df_dec = pd.read_csv(data_dir / "decision.csv") | |
df_keyword = pd.read_csv(data_dir / "submission_keyword.csv") | |
# Clean the data by dropping rows with NaN values in critical columns | |
df_reviews = df_reviews.dropna(subset=['review', 'rating_int', 'confidence_int']) | |
# Extract features | |
features = df_reviews['review'].apply(extract_text_features) | |
df_features = pd.DataFrame(features.tolist()) | |
df_reviews = pd.concat([df_reviews, df_features], axis=1) | |
# Drop any remaining rows with NaN values | |
df_reviews = df_reviews.dropna() | |
# Verify no NaN values remain | |
if df_reviews.isna().any().any(): | |
st.warning("Some NaN values were found and those rows were dropped") | |
df_reviews = df_reviews.dropna() | |
return df_reviews, df_submissions, df_dec, df_keyword | |
except FileNotFoundError as e: | |
st.error(f"Data files not found. Please make sure the data files are in the correct location: {data_dir}") | |
st.error(f"Error details: {str(e)}") | |
return None, None, None, None | |
except Exception as e: | |
st.error(f"Error processing data: {str(e)}") | |
return None, None, None, None | |
def create_feature_plot(df, x_col, y_col, title): | |
"""Create an interactive scatter plot using plotly""" | |
# Ensure no NaN values | |
df_plot = df.dropna(subset=[x_col, y_col]) | |
fig = px.scatter(df_plot, x=x_col, y=y_col, | |
title=title, | |
labels={x_col: x_col.replace('_', ' ').title(), | |
y_col: y_col.replace('_', ' ').title()}, | |
template="plotly_dark") | |
fig.update_layout( | |
title_x=0.5, | |
title_font_size=20, | |
showlegend=True, | |
plot_bgcolor='rgb(30, 30, 30)', | |
paper_bgcolor='rgb(30, 30, 30)', | |
font=dict(color='white') | |
) | |
return fig | |
def create_correlation_heatmap(df, columns): | |
"""Create a correlation heatmap using plotly""" | |
# Ensure no NaN values | |
df_corr = df[columns].dropna() | |
corr = df_corr.corr() | |
fig = go.Figure(data=go.Heatmap( | |
z=corr, | |
x=corr.columns, | |
y=corr.columns, | |
colorscale='RdBu', | |
zmin=-1, zmax=1, | |
text=[[f'{val:.2f}' for val in row] for row in corr.values], | |
texttemplate='%{text}', | |
textfont={"size": 12} | |
)) | |
fig.update_layout( | |
title='Feature Correlation Heatmap', | |
title_x=0.5, | |
title_font_size=20, | |
plot_bgcolor='rgb(30, 30, 30)', | |
paper_bgcolor='rgb(30, 30, 30)', | |
font=dict(color='white') | |
) | |
return fig | |
def create_regression_plot(df, x_col, y_col, title): | |
"""Create a scatter plot with regression line""" | |
# Ensure no NaN values | |
df_plot = df.dropna(subset=[x_col, y_col]) | |
fig = px.scatter(df_plot, x=x_col, y=y_col, | |
title=title, | |
labels={x_col: x_col.replace('_', ' ').title(), | |
y_col: y_col.replace('_', ' ').title()}, | |
template="plotly_dark") | |
# Add regression line | |
model = LinearRegression() | |
X = df_plot[x_col].values.reshape(-1, 1) | |
y = df_plot[y_col].values | |
model.fit(X, y) | |
y_pred = model.predict(X) | |
fig.add_trace(go.Scatter( | |
x=df_plot[x_col], | |
y=y_pred, | |
mode='lines', | |
name='Regression Line', | |
line=dict(color='red', width=2) | |
)) | |
fig.update_layout( | |
title_x=0.5, | |
title_font_size=20, | |
showlegend=True, | |
plot_bgcolor='rgb(30, 30, 30)', | |
paper_bgcolor='rgb(30, 30, 30)', | |
font=dict(color='white') | |
) | |
return fig, model | |
def create_correlation_examples(): | |
"""Create example plots showing different correlation types""" | |
# Generate example data | |
np.random.seed(42) | |
n_points = 100 | |
# Perfect positive correlation | |
x1 = np.linspace(0, 10, n_points) | |
y1 = x1 + np.random.normal(0, 0.1, n_points) | |
# Perfect negative correlation | |
x2 = np.linspace(0, 10, n_points) | |
y2 = -x2 + np.random.normal(0, 0.1, n_points) | |
# Low correlation | |
x3 = np.random.normal(5, 2, n_points) | |
y3 = np.random.normal(5, 2, n_points) | |
# Create subplots | |
fig = make_subplots(rows=1, cols=3, | |
subplot_titles=('Perfect Positive Correlation (r ≈ 1)', | |
'Perfect Negative Correlation (r ≈ -1)', | |
'Low Correlation (r ≈ 0)')) | |
# Add traces | |
fig.add_trace(go.Scatter(x=x1, y=y1, mode='markers', name='r ≈ 1'), | |
row=1, col=1) | |
fig.add_trace(go.Scatter(x=x2, y=y2, mode='markers', name='r ≈ -1'), | |
row=1, col=2) | |
fig.add_trace(go.Scatter(x=x3, y=y3, mode='markers', name='r ≈ 0'), | |
row=1, col=3) | |
# Update layout | |
fig.update_layout( | |
height=400, | |
showlegend=False, | |
template="plotly_dark", | |
plot_bgcolor='rgb(30, 30, 30)', | |
paper_bgcolor='rgb(30, 30, 30)', | |
font=dict(color='white', size=14), | |
title=dict( | |
text='Examples of Different Correlation Types', | |
x=0.5, | |
y=0.95, | |
font=dict(size=20) | |
) | |
) | |
# Update axes | |
for i in range(1, 4): | |
fig.update_xaxes(title_text='X', row=1, col=i) | |
fig.update_yaxes(title_text='Y', row=1, col=i) | |
return fig | |
def show(): | |
st.title("Week 5: Introduction to Machine Learning and Linear Regression") | |
# Introduction Section | |
st.header("Course Overview") | |
st.write(""" | |
In this week, we'll explore machine learning through a fascinating real-world challenge: The Academic Publishing Crisis. | |
Imagine you're the program chair for a prestigious AI conference. You've just received 5,000 paper submissions, and you need to: | |
- Decide which papers to accept (only 20% can be accepted) | |
- Ensure fair and consistent reviews | |
- Understand what makes reviewers confident in their assessments | |
The Problem: Human reviewers are inconsistent. Some are harsh, others lenient. Some write detailed reviews, others just a few sentences. | |
How can we use data to understand and improve this process? | |
**Your Mission: Build a machine learning system to analyze review patterns and predict paper acceptance!** | |
""") | |
# Learning Path | |
st.subheader("Key Concepts You'll Learn") | |
st.write(""" | |
1. **Linear Regression (线性回归):** | |
- Definition: A statistical method that models the relationship between a dependent variable and one or more independent variables | |
- Real-world example: Predicting house prices based on size and location | |
2. **Correlation Analysis (相关性分析):** | |
- Definition: Statistical measure that shows how strongly two variables are related | |
- Range: -1 (perfect negative correlation) to +1 (perfect positive correlation) | |
""") | |
# Add correlation examples | |
st.write("Here are examples of different correlation types:") | |
corr_examples = create_correlation_examples() | |
st.plotly_chart(corr_examples, use_container_width=True) | |
# Show example code for correlation analysis | |
with st.expander("Example Code: Correlation Analysis"): | |
st.code(""" | |
# Example: Calculating and visualizing correlations | |
import numpy as np | |
import pandas as pd | |
import plotly.graph_objects as go | |
from plotly.subplots import make_subplots | |
# Generate example data | |
np.random.seed(42) | |
n_points = 100 | |
# Perfect positive correlation | |
x1 = np.linspace(0, 10, n_points) | |
y1 = x1 + np.random.normal(0, 0.1, n_points) | |
# Perfect negative correlation | |
x2 = np.linspace(0, 10, n_points) | |
y2 = -x2 + np.random.normal(0, 0.1, n_points) | |
# Low correlation | |
x3 = np.random.normal(5, 2, n_points) | |
y3 = np.random.normal(5, 2, n_points) | |
# Calculate correlations | |
corr1 = np.corrcoef(x1, y1)[0,1] # Should be close to 1 | |
corr2 = np.corrcoef(x2, y2)[0,1] # Should be close to -1 | |
corr3 = np.corrcoef(x3, y3)[0,1] # Should be close to 0 | |
print(f"Correlation 1: {corr1:.3f}") | |
print(f"Correlation 2: {corr2:.3f}") | |
print(f"Correlation 3: {corr3:.3f}") | |
""") | |
st.write(""" | |
3. **Reading Linear Regression Output (解读线性回归结果):** | |
- R-squared (R²): Proportion of variance explained by the model (0-1) | |
- p-value: It represents the probability of observing results at least as extreme as the ones seen in the study, assuming the null hypothesis is true. Essentially, it's the likelihood of getting the observed outcome (or a more extreme one) if there's actually no real effect or relationship being studied | |
- Coefficients (系数): How much the dependent variable changes with a one-unit change in the independent variable | |
- Standard errors: Uncertainty in coefficient estimates | |
- Confidence intervals: Range where true coefficient likely lies | |
""") | |
# Load the data | |
df_reviews, df_submissions, df_dec, df_keyword = load_data() | |
if df_reviews is not None: | |
try: | |
# Module 1: Data Exploration | |
st.header("Module 1: Data Exploration") | |
st.write("Let's explore our dataset to understand the review patterns:") | |
# Show example code for data loading and cleaning | |
with st.expander("Example Code: Data Loading and Cleaning"): | |
st.code(""" | |
# Load and clean the data | |
import pandas as pd | |
import numpy as np | |
def load_and_clean_data(): | |
# Load datasets | |
df_reviews = pd.read_csv('reviews.csv') | |
df_submissions = pd.read_csv('Submissions.csv') | |
df_dec = pd.read_csv('decision.csv') | |
df_keyword = pd.read_csv('submission_keyword.csv') | |
# Clean reviews data | |
df_reviews = df_reviews.dropna(subset=['review', 'rating_int', 'confidence_int']) | |
# Extract text features | |
def extract_text_features(text): | |
if pd.isna(text) or text is None: | |
return { | |
'word_count': 0, | |
'sentence_count': 0, | |
'avg_word_length': 0, | |
'avg_sentence_length': 0 | |
} | |
# Convert to string and clean | |
text = str(text).lower() | |
text = re.sub(r'[^\\w\\s]', ' ', text) | |
# Split into words and sentences | |
words = [word for word in text.split() if word] | |
sentences = [s.strip() for s in re.split(r'[.!?]+', text) if s.strip()] | |
return { | |
'word_count': len(words), | |
'sentence_count': len(sentences), | |
'avg_word_length': np.mean([len(word) for word in words]) if words else 0, | |
'avg_sentence_length': len(words) / len(sentences) if sentences else 0 | |
} | |
# Apply feature extraction | |
features = df_reviews['review'].apply(extract_text_features) | |
df_features = pd.DataFrame(features.tolist()) | |
df_reviews = pd.concat([df_reviews, df_features], axis=1) | |
# Fill any remaining NaN values | |
df_reviews = df_reviews.fillna(0) | |
return df_reviews, df_submissions, df_dec, df_keyword | |
""") | |
# Verify data quality | |
st.subheader("Data Quality Check") | |
missing_data = df_reviews.isna().sum() | |
if missing_data.any(): | |
st.warning("Missing values found in the dataset:") | |
st.write(missing_data[missing_data > 0]) | |
# Show basic statistics | |
col1, col2 = st.columns(2) | |
with col1: | |
st.metric("Total Reviews", len(df_reviews)) | |
st.metric("Average Rating", f"{df_reviews['rating_int'].mean():.2f}") | |
with col2: | |
st.metric("Average Word Count", f"{df_reviews['word_count'].mean():.0f}") | |
st.metric("Average Confidence", f"{df_reviews['confidence_int'].mean():.2f}") | |
# Interactive feature selection | |
st.subheader("Interactive Feature Analysis") | |
feature_cols = ['word_count', 'sentence_count', 'avg_word_length', | |
'avg_sentence_length', 'rating_int', 'confidence_int'] | |
col1, col2 = st.columns(2) | |
with col1: | |
x_feature = st.selectbox("Select X-axis feature:", feature_cols) | |
with col2: | |
y_feature = st.selectbox("Select Y-axis feature:", feature_cols) | |
# Create interactive plot | |
fig = create_feature_plot(df_reviews, x_feature, y_feature, | |
f'{x_feature.replace("_", " ").title()} vs {y_feature.replace("_", " ").title()}') | |
st.plotly_chart(fig, use_container_width=True) | |
# Show correlation between selected features | |
corr = df_reviews[[x_feature, y_feature]].corr().iloc[0,1] | |
st.write(f"Correlation between {x_feature} and {y_feature}: {corr:.3f}") | |
# Distribution plots | |
st.subheader("Distribution of Ratings and Confidence") | |
col1, col2 = st.columns(2) | |
with col1: | |
fig = px.histogram(df_reviews.dropna(subset=['rating_int']), | |
x='rating_int', | |
title='Distribution of Ratings', | |
template="plotly_dark") | |
st.plotly_chart(fig, use_container_width=True) | |
with col2: | |
fig = px.histogram(df_reviews.dropna(subset=['confidence_int']), | |
x='confidence_int', | |
title='Distribution of Confidence', | |
template="plotly_dark") | |
st.plotly_chart(fig, use_container_width=True) | |
# Show example code for distribution analysis | |
with st.expander("Example Code: Distribution Analysis"): | |
st.code(""" | |
# Analyze distributions of numerical features | |
import plotly.express as px | |
def analyze_distributions(df): | |
# Create histograms for key features | |
fig1 = px.histogram(df, x='rating_int', | |
title='Distribution of Ratings', | |
template="plotly_dark") | |
fig2 = px.histogram(df, x='confidence_int', | |
title='Distribution of Confidence', | |
template="plotly_dark") | |
# Calculate summary statistics | |
stats = df[['rating_int', 'confidence_int']].describe() | |
return fig1, fig2, stats | |
# Usage | |
fig1, fig2, stats = analyze_distributions(df_reviews) | |
print(stats) | |
""") | |
# Text feature distributions | |
st.subheader("Text Feature Distributions") | |
col1, col2 = st.columns(2) | |
with col1: | |
fig = px.histogram(df_reviews.dropna(subset=['avg_word_length']), | |
x='avg_word_length', | |
title='Average Word Length Distribution', | |
template="plotly_dark") | |
st.plotly_chart(fig, use_container_width=True) | |
with col2: | |
fig = px.histogram(df_reviews.dropna(subset=['avg_sentence_length']), | |
x='avg_sentence_length', | |
title='Average Sentence Length Distribution', | |
template="plotly_dark") | |
st.plotly_chart(fig, use_container_width=True) | |
# Correlation analysis | |
st.subheader("Feature Correlations") | |
corr_fig = create_correlation_heatmap(df_reviews, feature_cols) | |
st.plotly_chart(corr_fig, use_container_width=True) | |
# Show example code for correlation analysis | |
with st.expander("Example Code: Correlation Analysis"): | |
st.code(""" | |
# Analyze correlations between features | |
import plotly.graph_objects as go | |
def analyze_correlations(df, columns): | |
# Calculate correlation matrix | |
corr = df[columns].corr() | |
# Create heatmap | |
fig = go.Figure(data=go.Heatmap( | |
z=corr, | |
x=corr.columns, | |
y=corr.columns, | |
colorscale='RdBu', | |
zmin=-1, zmax=1, | |
text=[[f'{val:.2f}' for val in row] for row in corr.values], | |
texttemplate='%{text}', | |
textfont={"size": 12} | |
)) | |
fig.update_layout( | |
title='Feature Correlation Heatmap', | |
template="plotly_dark" | |
) | |
return fig, corr | |
# Usage | |
fig, corr_matrix = analyze_correlations(df_reviews, feature_cols) | |
print(corr_matrix) | |
""") | |
# Module 2: Simple Linear Regression | |
st.header("Module 2: Simple Linear Regression") | |
st.write(""" | |
Let's explore the relationship between review length and rating using simple linear regression. | |
""") | |
# Interactive feature selection for regression | |
st.subheader("Interactive Regression Analysis") | |
col1, col2 = st.columns(2) | |
with col1: | |
x_reg = st.selectbox("Select feature for X-axis:", feature_cols) | |
with col2: | |
y_reg = st.selectbox("Select target variable:", feature_cols) | |
# Create regression plot | |
fig, model = create_regression_plot(df_reviews, x_reg, y_reg, | |
f'{x_reg.replace("_", " ").title()} vs {y_reg.replace("_", " ").title()}') | |
st.plotly_chart(fig, use_container_width=True) | |
# Show regression metrics | |
st.subheader("Regression Metrics") | |
col1, col2 = st.columns(2) | |
with col1: | |
r2_score = model.score(df_reviews[[x_reg]].dropna(), | |
df_reviews[y_reg].dropna()) | |
st.metric("R-squared", f"{r2_score:.3f}") | |
with col2: | |
st.metric("Slope", f"{model.coef_[0]:.3f}") | |
# Show example code for simple linear regression | |
with st.expander("Example Code: Simple Linear Regression"): | |
st.code(''' | |
# Perform simple linear regression | |
from sklearn.linear_model import LinearRegression | |
import plotly.graph_objects as go | |
def simple_linear_regression(df, x_col, y_col, title=None): | |
""" | |
Perform simple linear regression on any DataFrame. | |
Parameters: | |
----------- | |
df : pandas.DataFrame | |
Input DataFrame containing the features | |
x_col : str | |
Name of the column to use as independent variable | |
y_col : str | |
Name of the column to use as dependent variable | |
title : str, optional | |
Title for the plot. If None, will use column names | |
Returns: | |
-------- | |
tuple | |
(model, r2_score, fig) where: | |
- model is the fitted LinearRegression object | |
- r2_score is the R-squared value | |
- fig is the plotly figure object | |
""" | |
# Handle missing values by dropping them | |
df_clean = df.dropna(subset=[x_col, y_col]) | |
if len(df_clean) == 0: | |
raise ValueError("No valid data points after removing missing values") | |
# Prepare data | |
X = df_clean[[x_col]] | |
y = df_clean[y_col] | |
# Fit model | |
model = LinearRegression() | |
model.fit(X, y) | |
# Calculate R-squared | |
r2_score = model.score(X, y) | |
# Create visualization | |
fig = go.Figure() | |
# Add scatter plot | |
fig.add_trace(go.Scatter( | |
x=X[x_col], | |
y=y, | |
mode='markers', | |
name='Data Points', | |
marker=dict(size=8, opacity=0.6) | |
)) | |
# Add regression line | |
x_range = np.linspace(X[x_col].min(), X[x_col].max(), 100) | |
y_pred = model.predict(x_range.reshape(-1, 1)) | |
fig.add_trace(go.Scatter( | |
x=x_range, | |
y=y_pred, | |
mode='lines', | |
name='Regression Line', | |
line=dict(color='red', width=2) | |
)) | |
# Update layout | |
title = title or f'{x_col} vs {y_col}' | |
fig.update_layout( | |
title=title, | |
xaxis_title=x_col, | |
yaxis_title=y_col, | |
template="plotly_dark", | |
showlegend=True | |
) | |
return model, r2_score, fig | |
# Usage | |
fig, model = simple_linear_regression(df_reviews, 'word_count', 'rating_int') | |
print(f"R-squared: {model.score(X, y):.3f}") | |
print(f"Slope: {model.coef_[0]:.3f}") | |
''') | |
# Module 3: Multiple Linear Regression | |
st.header("Module 3: Multiple Linear Regression") | |
st.write(""" | |
Now let's build a more complex model using multiple features to predict ratings. | |
""") | |
try: | |
# Prepare data for modeling | |
feature_cols = ['word_count', 'sentence_count', | |
'avg_word_length', 'avg_sentence_length', | |
'confidence_int'] | |
# Interactive feature selection for multiple regression | |
st.subheader("Select Features for Multiple Regression") | |
selected_features = st.multiselect( | |
"Choose features to include in the model:", | |
feature_cols, | |
default=feature_cols | |
) | |
if selected_features: | |
# Ensure no NaN values in features | |
df_model = df_reviews.dropna(subset=selected_features + ['rating_int']) | |
X = df_model[selected_features] | |
y = df_model['rating_int'] | |
# Split data | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) | |
# Fit regression model | |
model = LinearRegression() | |
model.fit(X_train, y_train) | |
# Create 3D visualization if exactly 2 features are selected | |
if len(selected_features) == 2: | |
st.subheader("3D Visualization of Selected Features") | |
fig = px.scatter_3d(df_model.sample(min(1000, len(df_model))), | |
x=selected_features[0], | |
y=selected_features[1], | |
z='rating_int', | |
title='Review Features in 3D Space', | |
template="plotly_dark") | |
fig.update_layout( | |
title_x=0.5, | |
title_font_size=20, | |
scene = dict( | |
xaxis_title=selected_features[0].replace('_', ' ').title(), | |
yaxis_title=selected_features[1].replace('_', ' ').title(), | |
zaxis_title='Rating' | |
) | |
) | |
st.plotly_chart(fig, use_container_width=True) | |
# Show model metrics | |
st.subheader("Model Performance") | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
st.metric("Training R²", f"{model.score(X_train, y_train):.3f}") | |
with col2: | |
st.metric("Testing R²", f"{model.score(X_test, y_test):.3f}") | |
with col3: | |
st.metric("RMSE", f"{np.sqrt(mean_squared_error(y_test, model.predict(X_test))):.3f}") | |
# Show coefficients | |
st.subheader("Model Coefficients") | |
coef_df = pd.DataFrame({ | |
'Feature': X.columns, | |
'Coefficient': model.coef_ | |
}) | |
st.dataframe(coef_df) | |
# Show example code for multiple linear regression | |
with st.expander("Example Code: Multiple Linear Regression"): | |
st.code(''' | |
# Perform multiple linear regression | |
from sklearn.model_selection import train_test_split | |
from sklearn.metrics import mean_squared_error | |
def multiple_linear_regression(df, feature_cols, target_col, test_size=0.2, random_state=42): | |
""" | |
Perform multiple linear regression on any DataFrame. | |
Parameters: | |
----------- | |
df : pandas.DataFrame | |
Input DataFrame containing the features | |
feature_cols : list of str | |
Names of the columns to use as independent variables | |
target_col : str | |
Name of the column to use as dependent variable | |
test_size : float, optional | |
Proportion of data to use for testing | |
random_state : int, optional | |
Random seed for reproducibility | |
Returns: | |
-------- | |
tuple | |
(model, metrics, coef_df, fig) where: | |
- model is the fitted LinearRegression object | |
- metrics is a dictionary of performance metrics | |
- coef_df is a DataFrame of feature coefficients | |
- fig is the plotly figure object (if 2 features selected) | |
""" | |
# Handle missing values by dropping them | |
df_clean = df.dropna(subset=feature_cols + [target_col]) | |
if len(df_clean) == 0: | |
raise ValueError("No valid data points after removing missing values") | |
# Prepare data | |
X = df_clean[feature_cols] | |
y = df_clean[target_col] | |
# Split data | |
X_train, X_test, y_train, y_test = train_test_split( | |
X, y, test_size=test_size, random_state=random_state) | |
# Fit model | |
model = LinearRegression() | |
model.fit(X_train, y_train) | |
# Make predictions | |
y_train_pred = model.predict(X_train) | |
y_test_pred = model.predict(X_test) | |
# Calculate metrics | |
metrics = { | |
'train_r2': r2_score(y_train, y_train_pred), | |
'test_r2': r2_score(y_test, y_test_pred), | |
'train_rmse': np.sqrt(mean_squared_error(y_train, y_train_pred)), | |
'test_rmse': np.sqrt(mean_squared_error(y_test, y_test_pred)) | |
} | |
# Create coefficient DataFrame | |
coef_df = pd.DataFrame({ | |
'Feature': feature_cols, | |
'Coefficient': model.coef_, | |
'Absolute_Impact': np.abs(model.coef_) | |
}).sort_values('Absolute_Impact', ascending=False) | |
# Create visualization if exactly 2 features are selected | |
fig = None | |
if len(feature_cols) == 2: | |
fig = px.scatter_3d( | |
df_clean.sample(min(1000, len(df_clean))), | |
x=feature_cols[0], | |
y=feature_cols[1], | |
z=target_col, | |
title=f'Relationship between {feature_cols[0]}, {feature_cols[1]}, and {target_col}', | |
template="plotly_dark" | |
) | |
# Add regression plane | |
x_range = np.linspace(df_clean[feature_cols[0]].min(), df_clean[feature_cols[0]].max(), 20) | |
y_range = np.linspace(df_clean[feature_cols[1]].min(), df_clean[feature_cols[1]].max(), 20) | |
x_grid, y_grid = np.meshgrid(x_range, y_range) | |
z_grid = (model.intercept_ + | |
model.coef_[0] * x_grid + | |
model.coef_[1] * y_grid) | |
fig.add_trace(go.Surface( | |
x=x_grid, | |
y=y_grid, | |
z=z_grid, | |
opacity=0.5, | |
showscale=False | |
)) | |
return model, metrics, coef_df, fig | |
# Usage | |
model, train_score, test_score, rmse, coef_df = multiple_linear_regression( | |
df_reviews, | |
['word_count', 'sentence_count', 'confidence_int'], | |
'rating_int' | |
) | |
print(f"Training R²: {train_score:.3f}") | |
print(f"Testing R²: {test_score:.3f}") | |
print(f"RMSE: {rmse:.3f}") | |
print(coef_df) | |
''') | |
except Exception as e: | |
st.error(f"Error in model training: {str(e)}") | |
st.write("Please check the data quality and try again.") | |
except Exception as e: | |
st.error(f"Error in data processing: {str(e)}") | |
st.write("Please check the data format and try again.") | |
# Practice Exercises | |
st.header("Practice Exercises") | |
# Add new section for writing prompts | |
st.subheader("Writing Prompts for Analyzing Linear Regression Results") | |
st.write(""" | |
Use these prompts to help you interpret and write about your linear regression results: | |
1. **Model Fit and R-squared:** | |
- "The model explains [R² value]% of the variance in [dependent variable], suggesting [strong/moderate/weak] predictive power." | |
- "With an R-squared of [value], we can conclude that [interpretation of model fit]." | |
- "The relatively [high/low] R-squared value indicates that [interpretation of model's explanatory power]." | |
2. **Statistical Significance and p-values:** | |
- "The p-value of [value] for [feature] suggests that this relationship is [statistically significant/not significant]." | |
- "Given the p-value of [value], we [can/cannot] reject the null hypothesis that [interpretation]." | |
- "The statistical significance (p = [value]) indicates that [interpretation of relationship]." | |
3. **Coefficients and Their Meaning:** | |
- "For each unit increase in [independent variable], [dependent variable] [increases/decreases] by [coefficient value] units." | |
- "The coefficient of [value] for [feature] suggests that [interpretation of relationship]." | |
- "The positive/negative coefficient indicates that [interpretation of direction of relationship]." | |
4. **Uncertainty and Standard Errors:** | |
- "The standard error of [value] for [feature] indicates [interpretation of precision]." | |
- "The relatively [small/large] standard error suggests that [interpretation of estimate reliability]." | |
- "The uncertainty in our coefficient estimates, as shown by the standard errors, [interpretation of confidence in results]." | |
5. **Confidence Intervals:** | |
- "We are 95% confident that the true coefficient for [feature] lies between [lower bound] and [upper bound]." | |
- "The confidence interval [includes/does not include] zero, suggesting that [interpretation of significance]." | |
- "The narrow/wide confidence interval indicates [interpretation of precision]." | |
6. **Practical Significance:** | |
- "While the relationship is statistically significant, the effect size of [value] suggests [interpretation of practical importance]." | |
- "The coefficient of [value] indicates that [interpretation of real-world impact]." | |
- "In practical terms, this means that [interpretation of practical implications]." | |
7. **Model Limitations:** | |
- "The model's assumptions of [assumptions] may not hold in this case because [explanation]." | |
- "Potential limitations of our analysis include [list limitations]." | |
- "We should be cautious in interpreting these results because [explanation of limitations]." | |
8. **Recommendations:** | |
- "Based on our analysis, we recommend [specific action] because [explanation]." | |
- "The results suggest that [interpretation] and therefore [recommendation]." | |
- "To improve the model, we could [suggestions for improvement]." | |
""") | |
with st.expander("Exercise 1: Simple Linear Regression"): | |
st.write(""" | |
1. Create a function that performs simple linear regression on any DataFrame | |
2. The function should: | |
- Take a DataFrame and column names as input | |
- Handle missing values appropriately | |
- Calculate and return R-squared value | |
- Create a visualization of the relationship | |
3. Test your function with different features from the dataset | |
""") | |
st.code(''' | |
# Solution: Generic Simple Linear Regression Function | |
import pandas as pd | |
import numpy as np | |
from sklearn.linear_model import LinearRegression | |
import plotly.express as px | |
import plotly.graph_objects as go | |
def simple_linear_regression(df, x_col, y_col, title=None): | |
""" | |
Perform simple linear regression on any DataFrame. | |
Parameters: | |
----------- | |
df : pandas.DataFrame | |
Input DataFrame containing the features | |
x_col : str | |
Name of the column to use as independent variable | |
y_col : str | |
Name of the column to use as dependent variable | |
title : str, optional | |
Title for the plot. If None, will use column names | |
Returns: | |
-------- | |
tuple | |
(model, r2_score, fig) where: | |
- model is the fitted LinearRegression object | |
- r2_score is the R-squared value | |
- fig is the plotly figure object | |
""" | |
# Handle missing values by dropping them | |
df_clean = df.dropna(subset=[x_col, y_col]) | |
if len(df_clean) == 0: | |
raise ValueError("No valid data points after removing missing values") | |
# Prepare data | |
X = df_clean[[x_col]] | |
y = df_clean[y_col] | |
# Fit model | |
model = LinearRegression() | |
model.fit(X, y) | |
# Calculate R-squared | |
r2_score = model.score(X, y) | |
# Create visualization | |
fig = go.Figure() | |
# Add scatter plot | |
fig.add_trace(go.Scatter( | |
x=X[x_col], | |
y=y, | |
mode='markers', | |
name='Data Points', | |
marker=dict(size=8, opacity=0.6) | |
)) | |
# Add regression line | |
x_range = np.linspace(X[x_col].min(), X[x_col].max(), 100) | |
y_pred = model.predict(x_range.reshape(-1, 1)) | |
fig.add_trace(go.Scatter( | |
x=x_range, | |
y=y_pred, | |
mode='lines', | |
name='Regression Line', | |
line=dict(color='red', width=2) | |
)) | |
# Update layout | |
title = title or f'{x_col} vs {y_col}' | |
fig.update_layout( | |
title=title, | |
xaxis_title=x_col, | |
yaxis_title=y_col, | |
template="plotly_dark", | |
showlegend=True | |
) | |
return model, r2_score, fig | |
# Example usage: | |
# Load your data | |
df = pd.read_csv('your_data.csv') | |
# Try different feature pairs | |
feature_pairs = [ | |
('word_count', 'rating_int'), | |
('confidence_int', 'rating_int'), | |
('avg_word_length', 'rating_int') | |
] | |
# Analyze each pair | |
for x_col, y_col in feature_pairs: | |
try: | |
model, r2, fig = simple_linear_regression(df, x_col, y_col) | |
print(f"\nAnalysis of {x_col} vs {y_col}:") | |
print(f"R-squared: {r2:.3f}") | |
print(f"Slope: {model.coef_[0]:.3f}") | |
print(f"Intercept: {model.intercept_:.3f}") | |
fig.show() | |
except Exception as e: | |
print(f"Error analyzing {x_col} vs {y_col}: {str(e)}") | |
''') | |
with st.expander("Exercise 2: Multiple Linear Regression"): | |
st.write(""" | |
1. Create a function that performs multiple linear regression on any DataFrame | |
2. The function should: | |
- Take a DataFrame and lists of feature columns as input | |
- Handle missing values appropriately | |
- Split data into training and test sets | |
- Calculate and return performance metrics | |
- Create visualizations of the results | |
3. Test your function with different combinations of features | |
""") | |
st.code(''' | |
# Solution: Generic Multiple Linear Regression Function | |
import pandas as pd | |
import numpy as np | |
from sklearn.linear_model import LinearRegression | |
from sklearn.model_selection import train_test_split | |
from sklearn.metrics import mean_squared_error, r2_score | |
import plotly.express as px | |
import plotly.graph_objects as go | |
def multiple_linear_regression(df, feature_cols, target_col, test_size=0.2, random_state=42): | |
""" | |
Perform multiple linear regression on any DataFrame. | |
Parameters: | |
----------- | |
df : pandas.DataFrame | |
Input DataFrame containing the features | |
feature_cols : list of str | |
Names of the columns to use as independent variables | |
target_col : str | |
Name of the column to use as dependent variable | |
test_size : float, optional | |
Proportion of data to use for testing | |
random_state : int, optional | |
Random seed for reproducibility | |
Returns: | |
-------- | |
tuple | |
(model, metrics, coef_df, fig) where: | |
- model is the fitted LinearRegression object | |
- metrics is a dictionary of performance metrics | |
- coef_df is a DataFrame of feature coefficients | |
- fig is the plotly figure object (if 2 features selected) | |
""" | |
# Handle missing values by dropping them | |
df_clean = df.dropna(subset=feature_cols + [target_col]) | |
if len(df_clean) == 0: | |
raise ValueError("No valid data points after removing missing values") | |
# Prepare data | |
X = df_clean[feature_cols] | |
y = df_clean[target_col] | |
# Split data | |
X_train, X_test, y_train, y_test = train_test_split( | |
X, y, test_size=test_size, random_state=random_state) | |
# Fit model | |
model = LinearRegression() | |
model.fit(X_train, y_train) | |
# Make predictions | |
y_train_pred = model.predict(X_train) | |
y_test_pred = model.predict(X_test) | |
# Calculate metrics | |
metrics = { | |
'train_r2': r2_score(y_train, y_train_pred), | |
'test_r2': r2_score(y_test, y_test_pred), | |
'train_rmse': np.sqrt(mean_squared_error(y_train, y_train_pred)), | |
'test_rmse': np.sqrt(mean_squared_error(y_test, y_test_pred)) | |
} | |
# Create coefficient DataFrame | |
coef_df = pd.DataFrame({ | |
'Feature': feature_cols, | |
'Coefficient': model.coef_, | |
'Absolute_Impact': np.abs(model.coef_) | |
}).sort_values('Absolute_Impact', ascending=False) | |
# Create visualization if exactly 2 features are selected | |
fig = None | |
if len(feature_cols) == 2: | |
fig = px.scatter_3d( | |
df_clean.sample(min(1000, len(df_clean))), | |
x=feature_cols[0], | |
y=feature_cols[1], | |
z=target_col, | |
title=f'Relationship between {feature_cols[0]}, {feature_cols[1]}, and {target_col}', | |
template="plotly_dark" | |
) | |
# Add regression plane | |
x_range = np.linspace(df_clean[feature_cols[0]].min(), df_clean[feature_cols[0]].max(), 20) | |
y_range = np.linspace(df_clean[feature_cols[1]].min(), df_clean[feature_cols[1]].max(), 20) | |
x_grid, y_grid = np.meshgrid(x_range, y_range) | |
z_grid = (model.intercept_ + | |
model.coef_[0] * x_grid + | |
model.coef_[1] * y_grid) | |
fig.add_trace(go.Surface( | |
x=x_grid, | |
y=y_grid, | |
z=z_grid, | |
opacity=0.5, | |
showscale=False | |
)) | |
return model, metrics, coef_df, fig | |
# Example usage: | |
# Load your data | |
df = pd.read_csv('your_data.csv') | |
# Define feature sets to try | |
feature_sets = [ | |
['word_count', 'confidence_int'], | |
['word_count', 'sentence_count', 'confidence_int'], | |
['word_count', 'sentence_count', 'avg_word_length', 'avg_sentence_length', 'confidence_int'] | |
] | |
# Analyze each feature set | |
for features in feature_sets: | |
try: | |
print(f"\nAnalyzing features: {features}") | |
model, metrics, coef_df, fig = multiple_linear_regression( | |
df, features, 'rating_int') | |
# Print metrics | |
print("\nPerformance Metrics:") | |
for metric, value in metrics.items(): | |
print(f"{metric}: {value:.3f}") | |
# Print coefficients | |
print("\nFeature Coefficients:") | |
print(coef_df) | |
# Show visualization if available | |
if fig is not None: | |
fig.show() | |
except Exception as e: | |
print(f"Error analyzing features {features}: {str(e)}") | |
''') | |
# Weekly Assignment | |
username = st.session_state.get("username", "Student") | |
st.header(f"{username}'s Weekly Assignment") | |
if username == "manxiii": | |
st.markdown(""" | |
Hello **manxiii**, here is your Assignment 5: Machine Learning Analysis. | |
1. Pick out some figures from the Colab Notebook and write a short summary of the results. Add them to your overleaf paper | |
- Colab [Link](https://colab.research.google.com/drive/1ScwSa8WBcOMCloXsTV5TPFoVrcPHXlW2#scrollTo=VDMRGRbSR0gc) | |
- Overleaf [Link](https://www.overleaf.com/project/68228f4ccb9d18d92c26ba13) | |
2. Update your literature review section in the overleaf paper, given the homework. | |
**Due Date:** End of Week 5 | |
""") | |
elif username == "zhu": | |
st.markdown(""" | |
Hello **zhu**, here is your Assignment 5: Machine Learning Analysis. | |
1. Implement the complete machine learning workflow | |
2. Create insightful visualizations of model results | |
3. Draw conclusions from your analysis | |
4. Submit your work in a Jupyter notebook | |
**Due Date:** End of Week 5 | |
""") | |
elif username == "WK": | |
st.markdown(""" | |
Hello **WK**, here is your Assignment 5: Machine Learning Analysis. | |
1. Complete the feature engineering pipeline | |
2. Build and evaluate linear regression models | |
3. Analyze patterns in the data | |
4. Submit your findings | |
**Due Date:** End of Week 5 | |
""") | |
else: | |
st.markdown(f""" | |
Hello **{username}**, here is your Assignment 5: Machine Learning Analysis. | |
1. Complete the feature engineering pipeline | |
2. Build and evaluate linear regression models | |
3. Analyze patterns in the data | |
4. Submit your findings | |
**Due Date:** End of Week 5 | |
""") |