Spaces:
Runtime error
Runtime error
File size: 7,318 Bytes
b8a7acb a26ac7e 8505717 cda260d b8a7acb 3670697 c114fac 119b8cd c114fac 3670697 c114fac 4855721 c114fac 75ea1cc 445cb9a c114fac f68ad9e c114fac 6e6e483 5af67d4 ac6aba3 1452771 1b7ed19 b24d4f6 b02a7f6 edd1c74 b8d86cc bd3fdf2 6d1f344 edd1c74 fa86929 4d96b3f edd1c74 6d1f344 edd1c74 6d1f344 4d96b3f 6d1f344 edd1c74 4d96b3f 6d1f344 edd1c74 6d1f344 edd1c74 6d1f344 4d96b3f edd1c74 6d1f344 76a5ff8 6d1f344 76a5ff8 b02a7f6 bd3fdf2 6d1f344 875db1b e77657a 6d1f344 1e7c569 6d1f344 2078afe f5aef4c 6d1f344 336fe2c f5aef4c 7aada44 6062e5c ac6aba3 0e007bd a14dda6 1b7ed19 bd3fdf2 f8d6a23 6d1f344 81738fe a14dda6 6d1f344 c0fce84 6d1f344 c0fce84 81738fe a14dda6 6d1f344 c0fce84 81738fe a14dda6 6d1f344 366bcd5 6d1f344 366bcd5 b24d4f6 b02a7f6 336fe2c 2f5d69d 6bbaa62 f6b2216 336fe2c b02a7f6 e541f17 b02a7f6 e541f17 466cd11 9ba8687 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import gradio as gr
from llm_loader import load_model
from processing import process_input
from transcription_diarization import diarize_audio
from visualization import create_charts
import time
import re
from config import openai_api_key
# Load the model
llm = load_model(openai_api_key)
def analyze_video(video_path, progress=gr.Progress()):
start_time = time.time()
if not video_path:
return [None] * 29 # Return None for all outputs
progress(0, desc="Starting analysis...")
progress(0.2, desc="Starting transcription and diarization")
transcription = diarize_audio(video_path)
progress(0.5, desc="Transcription and diarization complete.")
progress(0.6, desc="Processing transcription")
results = process_input(transcription, llm)
progress(0.7, desc="Transcription processing complete.")
progress(0.9, desc="Generating charts")
charts, explanations, general_impressions = create_charts(results)
# Assuming speaker_general_impression is already defined
speaker_general_impression_str = str(general_impressions)
# Remove quotation marks
general_impressions = speaker_general_impression_str.replace('"', '')
print(general_impressions)
progress(1.0, desc="Charts generation complete.")
end_time = time.time()
execution_time = end_time - start_time
output_components = [] # transcript
output_components.append(f"Completed in {int(execution_time)} seconds.")
output_components.append(gr.Textbox(value=transcription, label="Transcript", lines=10, visible=True))
with gr.Tab(label=f'Description', visible=False):
gr.Markdown(description_txt)
gr.HTML("<div style='height: 20px;'></div>")
gr.Image(value="appendix/AI Personality Detection flow - 1.png", label='Flowchart 1', width=1000)
gr.Image(value="appendix/AI Personality Detection flow - 2.png", label='Flowchart 2', width=1000)
for i, (speaker_id, speaker_charts) in enumerate(charts.items(), start=1):
print(speaker_id)
speaker_explanations = explanations[speaker_id]
speaker_general_impression = general_impressions[speaker_id]
with gr.Tab():
with gr.TabItem(label=f'General Impression'):
speaker_section1 = [
gr.Markdown(f"### {speaker_id}", visible=True),
gr.Textbox(value=speaker_general_impression, label="General Impression", visible=True)
]
with gr.TabItem(label=f'Attachment Styles'):
speaker_section2 = [
gr.Plot(value=speaker_charts.get("attachment", None), visible=True),
gr.Plot(value=speaker_charts.get("dimensions", None), visible=True),
gr.Textbox(value=speaker_explanations.get("attachment", ""), label="Attachment Styles Explanation",
visible=True)
]
with gr.TabItem(label=f'Big Five Traits'):
speaker_section3 = [
gr.Plot(value=speaker_charts.get("bigfive", None), visible=True),
gr.Textbox(value=speaker_explanations.get("bigfive", ""), label="Big Five Traits Explanation",
visible=True)
]
with gr.TabItem(label=f'Personalities'):
speaker_section4 = [
gr.Plot(value=speaker_charts.get("personality", None), visible=True),
gr.Textbox(value=speaker_explanations.get("personality", ""),
label="Personality Disorders Explanation", visible=True)
]
output_components.extend(speaker_section1)
output_components.extend(speaker_section2)
output_components.extend(speaker_section3)
output_components.extend(speaker_section4)
# Pad with None for any missing speakers
while len(output_components) < 28:
output_components.extend([gr.update(visible=False)] * 9)
return output_components
def use_example():
return "examples/Scenes.From.A.Marriage.US.mp4"
with gr.Blocks() as iface:
gr.Markdown("# Multiple-Speakers-Personality-Analyzer")
gr.Markdown("This project provides an advanced AI system designed for diagnosing and profiling personality attributes from video content based on a single speaker or multiple speakers in a conversation.")
with gr.Row():
with gr.Column(scale=3):
video_input = gr.Video(label="Upload Video")
analyze_button = gr.Button("Analyze")
with gr.Column(scale=1):
gr.Markdown("Example Video")
example_video = gr.Video("examples/Scenes.From.A.Marriage.US.mp4", label="Example Video")
use_example_button = gr.Button("Load Example")
# Create output components
output_components = []
# Add transcript output near the top
execution_box = gr.Textbox(label="Execution Info", value="N/A", lines=1)
output_components.append(execution_box)
transcript = gr.Textbox(label="Transcript", lines=10, visible=False)
output_components.append(transcript)
for n in range(3): # Assuming maximum of 3 speakers
with gr.Tab(label=f'Speaker {n + 1}', visible=True):
with gr.TabItem(label=f'General Impression'):
column_components1 = [
gr.Markdown(visible=False),
gr.Textbox(label="General Impression", visible=False)]
with gr.TabItem(label=f'Attachment Styles'):
column_components2 = [
gr.Plot(visible=False),
gr.Plot(visible=False),
gr.Textbox(label="Attachment Styles Explanation", visible=False)]
with gr.TabItem(label=f'Big Five Traits'):
column_components3 = [
gr.Plot(visible=False),
gr.Textbox(label="Big Five Traits Explanation", visible=False)]
with gr.TabItem(label=f'Personalities'):
column_components4 = [
gr.Plot(visible=False),
gr.Textbox(label="Personality Disorders Explanation", visible=False)]
output_components.extend(column_components1)
output_components.extend(column_components2)
output_components.extend(column_components3)
output_components.extend(column_components4)
with open('description.txt', 'r') as file:
description_txt = file.read()
with gr.Tab(label=f'Description', visible=True):
gr.Markdown(description_txt)
gr.HTML("<div style='height: 20px;'></div>")
gr.Image(value="appendix/AI Personality Detection flow - 1.png", label='Flowchart 1', width=1000)
gr.Image(value="appendix/AI Personality Detection flow - 2.png", label='Flowchart 2', width=1000)
analyze_button.click(
fn=analyze_video,
inputs=[video_input],
outputs=output_components,
show_progress=True
)
use_example_button.click(
fn=use_example,
inputs=[],
outputs=[video_input],
).then(fn=analyze_video,
inputs=[video_input],
outputs=output_components,
show_progress=True
)
if __name__ == "__main__":
iface.launch() |