Spaces:
Runtime error
Runtime error
File size: 6,396 Bytes
b8a7acb a26ac7e 8505717 cda260d b8a7acb 3670697 c114fac 119b8cd c114fac 3670697 c114fac 4855721 c114fac 75ea1cc c114fac 26a111a a419ce1 edd1c74 946970c edd1c74 946970c ce4bb13 946970c 875db1b edd1c74 897d8ef edd1c74 875db1b e77657a 897d8ef edd1c74 1e7c569 2078afe 336fe2c 7aada44 6062e5c f6b2216 6062e5c 7aada44 2183eec c0fce84 7aada44 c0fce84 ce4bb13 f46e428 ce4bb13 7aada44 c0fce84 7aada44 c0fce84 7aada44 ce4bb13 7aada44 6062e5c 7aada44 336fe2c 2f5d69d 6bbaa62 f6b2216 336fe2c 1641d0b e541f17 2f5d69d 3ed67f0 e541f17 466cd11 9ba8687 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import gradio as gr
from llm_loader import load_model
from processing import process_input
from transcription_diarization import diarize_audio
from visualization import create_charts
import time
import re
from config import openai_api_key
# Load the model
llm = load_model(openai_api_key)
def analyze_video(video_path, progress=gr.Progress()):
start_time = time.time()
if not video_path:
return [None] * 29 # Return None for all outputs
progress(0, desc="Starting analysis...")
progress(0.2, desc="Starting transcription and diarization")
transcription = diarize_audio(video_path)
progress(0.5, desc="Transcription and diarization complete.")
progress(0.6, desc="Processing transcription")
results = process_input(transcription, llm)
progress(0.7, desc="Transcription processing complete.")
progress(0.9, desc="Generating charts")
charts, explanations, general_impressions = create_charts(results)
progress(1.0, desc="Charts generation complete.")
end_time = time.time()
execution_time = end_time - start_time
output_components = [transcription] # transcript
for i, (speaker_id, speaker_charts) in enumerate(charts.items(), start=1):
print(speaker_id)
speaker_explanations = explanations[speaker_id]
speaker_general_impression = general_impressions[speaker_id]
with gr.Tab(visible=True):
with gr.TabItem(label=f'General Impression'):
speaker_section1 = [
gr.Markdown(f"# {speaker_id}", visible=True),
gr.Textbox(value=speaker_general_impression, label="General Impression", visible=True)
]
with gr.TabItem(label=f'Attachment Styles'):
with gr.Row():
speaker_section2 = [
gr.Plot(value=speaker_charts.get("attachment", None), visible=True),
gr.Plot(value=speaker_charts.get("dimensions", None), visible=True),
gr.Textbox(value=speaker_explanations.get("attachment", ""), label="Attachment Styles Explanation", visible=True)
]
with gr.TabItem(label=f'Big Five Traits'):
speaker_section3 = [
gr.Plot(value=speaker_charts.get("bigfive", None), visible=True),
gr.Textbox(value=speaker_explanations.get("bigfive", ""), label="Big Five Traits Explanation", visible=True)
]
with gr.TabItem(label=f'Personalities'):
speaker_section4 = [
gr.Plot(value=speaker_charts.get("personality", None), visible=True),
gr.Textbox(value=speaker_explanations.get("personality", ""), label="Personality Disorders Explanation", visible=True)
]
output_components.extend(speaker_section1)
output_components.extend(speaker_section2)
output_components.extend(speaker_section3)
output_components.extend(speaker_section4)
# Pad with None for any missing speakers
while len(output_components) < 28:
output_components.extend([gr.update(visible=False)] * 9)
output_components.append(f"Completed in {int(execution_time)} seconds.") # execution info
return output_components
def update_output(*args):
return [gr.update(value=arg, visible=arg is not None) for arg in args]
def use_example():
return "examples/Scenes.From.A.Marriage.US.mp4"
with gr.Blocks() as iface:
gr.Markdown("# AI Personality Detection")
with gr.Row():
with gr.Column(scale=3):
gr.Markdown("Upload a video")
video_input = gr.Video(label="Upload Video")
analyze_button = gr.Button("Analyze")
with gr.Column(scale=1):
gr.Markdown("Example Video")
example_video = gr.Video("examples/Scenes.From.A.Marriage.US.mp4", label="Example Video")
use_example_button = gr.Button("Use Example Video")
# Create output components
output_components = []
# Add transcript output near the top
execution_info_box = gr.Textbox(label="Transcript", value="N/A", lines=1)
output_components.append(execution_info_box)
for i in range(3): # Assuming maximum of 3 speakers
with gr.Tab(label=f'Speaker {i+1}', visible=False):
with gr.TabItem(label=f'General Impression'):
column_components1 = [
gr.Markdown(visible=False),
gr.Textbox(label="General Impression", visible=False)]
with gr.TabItem(label=f'Attachment Styles'):
with gr.Row():
column_components2 = [
gr.Plot(visible=False),
gr.Plot(visible=False),
gr.Textbox(label="Attachment Styles Explanation", visible=False)]
with gr.TabItem(label=f'Big Five Traits'):
column_components3 = [
gr.Plot(visible=False),
gr.Textbox(label="Big Five Traits Explanation", visible=False)]
with gr.TabItem(label=f'Personalities'):
column_components4 = [
gr.Plot(visible=False),
gr.Textbox(label="Personality Disorders Explanation", visible=False)]
output_components.extend(column_components1)
output_components.extend(column_components2)
output_components.extend(column_components3)
output_components.extend(column_components4)
# Add execution info component
transcript_output = gr.Textbox(label="Transcript", lines=10, visible=False)
output_components.append(transcript_output)
analyze_button.click(
fn=analyze_video,
inputs=[video_input],
outputs=output_components,
show_progress=True
)
use_example_button.click(
fn=use_example,
inputs=[],
outputs=[video_input],
).then(fn=analyze_video,
inputs=[video_input],
outputs=output_components,
show_progress=True
)
if __name__ == "__main__":
iface.launch() |