Multiple-Speakers-Personality-Analyzer / transcription_diarization.py
reab5555's picture
Update transcription_diarization.py
123e28e verified
raw
history blame
5.73 kB
import os
import torch
import math
from moviepy.editor import VideoFileClip
from pyannote.audio import Pipeline
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
import librosa
import datetime
from collections import defaultdict
import numpy as np
import spaces
class LazyDiarizationPipeline:
def __init__(self):
self.pipeline = None
@spaces.GPU(duration=100)
def get_pipeline(self, diarization_access_token):
if self.pipeline is None:
self.pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization-3.1", use_auth_token=diarization_access_token)
self.pipeline = self.pipeline.to(torch.device("cuda"))
return self.pipeline
class LazyTranscriptionPipeline:
def __init__(self):
self.model = None
self.processor = None
self.pipe = None
@spaces.GPU(duration=100)
def get_pipeline(self, language):
if self.pipe is None:
model_id = "openai/whisper-large-v3"
self.model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, use_safetensors=True
)
self.model.to(torch.device("cuda"))
self.processor = AutoProcessor.from_pretrained(model_id)
self.pipe = pipeline(
"automatic-speech-recognition",
model=self.model,
tokenizer=self.processor.tokenizer,
feature_extractor=self.processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=30,
batch_size=2,
return_timestamps=True,
torch_dtype=torch.float16,
device=torch.device("cuda"),
generate_kwargs={"language": language}
)
return self.pipe
lazy_diarization_pipeline = LazyDiarizationPipeline()
lazy_transcription_pipeline = LazyTranscriptionPipeline()
def extract_audio(video_path, audio_path):
video = VideoFileClip(video_path)
audio = video.audio
audio.write_audiofile(audio_path, codec='pcm_s16le', fps=16000)
def format_timestamp(seconds):
return str(datetime.timedelta(seconds=seconds)).split('.')[0]
@spaces.GPU(duration=100)
def transcribe_audio(audio_path, language):
pipe = lazy_transcription_pipeline.get_pipeline(language)
audio, sr = librosa.load(audio_path, sr=16000)
duration = len(audio) / sr
n_chunks = math.ceil(duration / 30)
transcription_txt = ""
transcription_chunks = []
for i in range(n_chunks):
start = i * 30 * sr
end = min((i + 1) * 30 * sr, len(audio))
audio_chunk = audio[start:end]
audio_chunk = (audio_chunk * 32767).astype(np.float32)
result = pipe(audio_chunk)
transcription_txt += result["text"]
for chunk in result["chunks"]:
start_time, end_time = chunk["timestamp"]
transcription_chunks.append({
"start": start_time + i * 30,
"end": end_time + i * 30,
"text": chunk["text"]
})
print(f"Transcription Progress: {int(((i + 1) / n_chunks) * 100)}%")
return transcription_txt, transcription_chunks
def create_combined_srt(transcription_chunks, diarization, output_path):
speaker_segments = []
speaker_durations = defaultdict(float)
for segment, _, speaker in diarization.itertracks(yield_label=True):
speaker_durations[speaker] += segment.end - segment.start
speaker_segments.append((segment.start, segment.end, speaker))
sorted_speakers = sorted(speaker_durations.items(), key=lambda x: x[1], reverse=True)
speaker_map = {}
for i, (speaker, _) in enumerate(sorted_speakers, start=1):
speaker_map[speaker] = f"Speaker {i}"
with open(output_path, 'w', encoding='utf-8') as srt_file:
for i, chunk in enumerate(transcription_chunks, 1):
start_time, end_time = chunk["start"], chunk["end"]
text = chunk["text"]
current_speaker = "Unknown"
for seg_start, seg_end, speaker in speaker_segments:
if seg_start <= start_time < seg_end:
current_speaker = speaker_map[speaker]
break
start_str = format_timestamp(start_time).split('.')[0].lstrip('0')
end_str = format_timestamp(end_time).split('.')[0].lstrip('0')
srt_file.write(f"{i}\n")
srt_file.write(f"{current_speaker}\n time: ({start_str} --> {end_str})\n text: {text}\n\n")
with open(output_path, 'a', encoding='utf-8') as srt_file:
for i, (speaker, duration) in enumerate(sorted_speakers[:2], start=1):
duration_str = format_timestamp(duration).split('.')[0].lstrip('0')
srt_file.write(f"Speaker {i} (originally {speaker}): total duration {duration_str}\n")
@spaces.GPU(duration=100)
def process_video(video_path, diarization_access_token, language):
base_name = os.path.splitext(video_path)[0]
audio_path = f"{base_name}.wav"
extract_audio(video_path, audio_path)
print("Performing diarization...")
pipeline = lazy_diarization_pipeline.get_pipeline(diarization_access_token)
diarization = pipeline(audio_path)
print("Diarization complete.")
print("Performing transcription...")
transcription, chunks = transcribe_audio(audio_path, language)
print("Transcription complete.")
combined_srt_path = f"{base_name}_combined.srt"
create_combined_srt(chunks, diarization, combined_srt_path)
print(f"Combined SRT file created and saved to {combined_srt_path}")
os.remove(audio_path)
return combined_srt_path