Multiple-Speakers-Personality-Analyzer / transcription_diarization.py
reab5555's picture
Upload 8 files
e3551a8 verified
raw
history blame
6.54 kB
import os
import torch
import gc
import math
from moviepy.editor import VideoFileClip
from pyannote.audio import Pipeline
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
import librosa
import soundfile as sf
import datetime
from collections import defaultdict
import numpy as np
class LazyDiarizationPipeline:
def __init__(self):
self.pipeline = None
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def get_pipeline(self, hf_token):
if self.pipeline is None:
self.pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization-3.1",
use_auth_token=hf_token)
self.pipeline = self.pipeline.to(self.device)
torch.cuda.empty_cache()
gc.collect()
return self.pipeline
class LazyTranscriptionPipeline:
def __init__(self):
self.model = None
self.processor = None
self.pipe = None
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def get_pipeline(self):
if self.pipe is None:
model_id = "openai/whisper-large-v3"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
self.model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
self.model.to(self.device)
self.processor = AutoProcessor.from_pretrained(model_id)
self.pipe = pipeline(
"automatic-speech-recognition",
model=self.model,
tokenizer=self.processor.tokenizer,
feature_extractor=self.processor.feature_extractor,
chunk_length_s=30,
return_timestamps=True,
device=self.device
)
return self.pipe
lazy_diarization_pipeline = LazyDiarizationPipeline()
lazy_transcription_pipeline = LazyTranscriptionPipeline()
def extract_audio(video_path, audio_path):
video = VideoFileClip(video_path)
audio = video.audio
audio.write_audiofile(audio_path, codec='pcm_s16le', fps=16000)
def format_timestamp(seconds):
return str(datetime.timedelta(seconds=seconds)).split('.')[0]
def transcribe_audio(audio_path, language):
pipe = lazy_transcription_pipeline.get_pipeline()
audio, sr = librosa.load(audio_path, sr=16000)
duration = len(audio) / sr
n_chunks = math.ceil(duration / 30)
transcription_txt = ""
transcription_chunks = []
for i in range(n_chunks):
start = i * 30 * sr
end = min((i + 1) * 30 * sr, len(audio))
audio_chunk = audio[start:end]
audio_chunk = (audio_chunk * 32767).astype(np.float32)
result = pipe(audio_chunk, generate_kwargs={"language": language, "task": "transcribe"})
transcription_txt += result["text"]
for chunk in result["chunks"]:
start_time, end_time = chunk["timestamp"]
if start_time is None:
start_time = 0
if end_time is None:
end_time = 0
transcription_chunks.append({
"start": start_time + i * 30,
"end": end_time + i * 30,
"text": chunk["text"]
})
return transcription_txt, transcription_chunks
def diarize_audio(audio_path, pipeline, max_speakers):
# Load the entire audio file
audio, sr = librosa.load(audio_path, sr=16000)
# Write the audio to a temporary file if needed for the pipeline
temp_audio_path = f"{audio_path}_temp.wav"
sf.write(temp_audio_path, audio, sr)
# Perform speaker diarization on the entire audio file
diarization = pipeline(temp_audio_path, num_speakers=max_speakers)
# Clean up the temporary file
os.remove(temp_audio_path)
torch.cuda.empty_cache()
gc.collect()
return diarization
def create_combined_srt(transcription_chunks, diarization, output_path, max_speakers):
speaker_segments = []
speaker_durations = defaultdict(float)
for segment, _, speaker in diarization.itertracks(yield_label=True):
speaker_durations[speaker] += segment.end - segment.start
speaker_segments.append((segment.start, segment.end, speaker))
sorted_speakers = sorted(speaker_durations.items(), key=lambda x: x[1], reverse=True)[:max_speakers]
speaker_map = {}
for i, (speaker, _) in enumerate(sorted_speakers, start=1):
speaker_map[speaker] = f"Speaker {i}"
with open(output_path, 'w', encoding='utf-8') as srt_file:
for i, chunk in enumerate(transcription_chunks, 1):
start_time, end_time = chunk["start"], chunk["end"]
text = chunk["text"]
current_speaker = "Unknown"
for seg_start, seg_end, speaker in speaker_segments:
if seg_start <= start_time < seg_end:
current_speaker = speaker_map.get(speaker, "Unknown")
break
start_str = format_timestamp(start_time).split('.')[0].lstrip('0')
end_str = format_timestamp(end_time).split('.')[0].lstrip('0')
srt_file.write(f"{i}\n")
srt_file.write(f"{current_speaker}\n time: ({start_str} --> {end_str})\n text: {text}\n\n")
with open(output_path, 'a', encoding='utf-8') as srt_file:
for i, (speaker, duration) in enumerate(sorted_speakers, start=1):
duration_str = format_timestamp(duration).split('.')[0].lstrip('0')
srt_file.write(f"Speaker {i} (originally {speaker}): total duration {duration_str}\n")
def process_video(video_path, hf_token, language, max_speakers=3):
base_name = os.path.splitext(video_path)[0]
audio_path = f"{base_name}.wav"
extract_audio(video_path, audio_path)
pipeline = lazy_diarization_pipeline.get_pipeline(hf_token)
diarization = diarize_audio(audio_path, pipeline, max_speakers)
# Clear GPU memory after diarization
torch.cuda.empty_cache()
gc.collect()
transcription, chunks = transcribe_audio(audio_path, language)
# Clear GPU memory after transcription
torch.cuda.empty_cache()
gc.collect()
combined_srt_path = f"{base_name}_combined.srt"
create_combined_srt(chunks, diarization, combined_srt_path, max_speakers)
os.remove(audio_path)
# Final GPU memory clear
torch.cuda.empty_cache()
gc.collect()
return combined_srt_path