File size: 2,243 Bytes
6bdd050
8c5a4c5
12b6ee7
 
8c5a4c5
 
 
 
 
12b6ee7
 
 
 
 
 
8c5a4c5
 
12b6ee7
8c5a4c5
12b6ee7
 
 
 
 
 
8c5a4c5
12b6ee7
8c5a4c5
 
12b6ee7
8c5a4c5
12b6ee7
8c5a4c5
 
 
 
12b6ee7
 
 
 
 
 
 
 
 
 
 
 
 
 
8c5a4c5
 
12b6ee7
 
8c5a4c5
 
 
 
12b6ee7
 
 
8c5a4c5
 
12b6ee7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import torch
import gradio as gr
from transformers import pipeline
import pytube as pt

MODEL_NAME = "openai/whisper-small"

device = "cuda" if torch.cuda.is_available() else "cpu"

pipe = pipeline(
    task="automatic-speech-recognition",
    model=MODEL_NAME,
    chunk_length_s=30,
    device=device,
)


def transcribe(microphone, file_upload):
    warn_output = ""
    if (microphone is not None) and (file_upload is not None):
        warn_output = (
            "WARNING: You've uploaded an audio file and used the microphone. "
            "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
        )
        file = microphone

    elif (microphone is None) and (file_upload is None):
        return "ERROR: You have to either use the microphone or upload an audio file"

    file = microphone if microphone is not None else file_upload

    text = pipe(file)["text"]

    return warn_output + text


def yt_transcribe(yt_url):

    yt = pt.YouTube(yt_url)
    stream = yt.streams.filter(only_audio=True)[0]
    stream.download(filename="audio.mp3")

    text = pipe("audio.mp3")["text"]

    return text


demo = gr.Blocks()

mf_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.inputs.Audio(source="microphone", type="filepath", optional=True),
        gr.inputs.Audio(source="upload", type="filepath", optional=True),
    ],
    outputs="text",
    layout="horizontal",
    theme="huggingface",
    title="Whisper Audio Transcribe",
    description="Transcribe long audio/ microphone input (powered by 🤗transformers) with a click of a button!",
    allow_flagging="never",
)

yt_transcribe = gr.Interface(
    fn=yt_transcribe,
    inputs=[
        gr.inputs.Textbox(
            lines=1, placeholder="Paste a URL to YT video here", label="yt_url"
        )
    ],
    outputs="text",
    layout="horizontal",
    theme="huggingface",
    title="Whisper YT Transcribe",
    description="Transcribe long YouTube videos (powered by 🤗transformers) with a click of a button!",
    allow_flagging="never",
)

with demo:
    gr.TabbedInterface(
        [mf_transcribe, yt_transcribe], ["Audio Transcribe", "YouTube Transcribe"]
    )

demo.launch(enable_queue=True)