DRAFT Python API Reference
THE API REFERENCES BELOW ARE STILL UNDER DEVELOPMENT.
:::tip NOTE Knowledge Base Management :::
Create knowledge base
RAGFlow.create_dataset(
name: str,
avatar: str = "",
description: str = "",
language: str = "English",
permission: str = "me",
document_count: int = 0,
chunk_count: int = 0,
parse_method: str = "naive",
parser_config: DataSet.ParserConfig = None
) -> DataSet
Creates a knowledge base (dataset).
Parameters
name: str, Required
The unique name of the dataset to create. It must adhere to the following requirements:
- Permitted characters include:
- English letters (a-z, A-Z)
- Digits (0-9)
- "_" (underscore)
- Must begin with an English letter or underscore.
- Maximum 65,535 characters.
- Case-insensitive.
avatar: str
Base64 encoding of the avatar. Defaults to ""
description
tenant_id: str
The id of the tenant associated with the created dataset is used to identify different users. Defaults to None.
- If creating a dataset, tenant_id must not be provided.
- If updating a dataset, tenant_id can't be changed.
description: str
The description of the created dataset. Defaults to "".
language: str
The language setting of the created dataset. Defaults to "English". ????????????
permission
Specify who can operate on the dataset. Defaults to "me".
document_count: int
The number of documents associated with the dataset. Defaults to 0.
chunk_count: int
The number of data chunks generated or processed by the created dataset. Defaults to 0.
parse_method, str
The method used by the dataset to parse and process data. Defaults to "naive".
parser_config
The parser configuration of the dataset. A ParserConfig object contains the following attributes:
chunk_token_count: Defaults to128.layout_recognize: Defaults toTrue.delimiter: Defaults to'\n!?。;!?'.task_page_size: Defaults to12.
Returns
- Success: A
datasetobject. - Failure:
Exception
Examples
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
ds = rag_object.create_dataset(name="kb_1")
Delete knowledge bases
RAGFlow.delete_datasets(ids: list[str] = None)
Deletes knowledge bases by name or ID.
Parameters
ids
The IDs of the knowledge bases to delete.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
rag.delete_datasets(ids=["id_1","id_2"])
List knowledge bases
RAGFlow.list_datasets(
page: int = 1,
page_size: int = 1024,
orderby: str = "create_time",
desc: bool = True,
id: str = None,
name: str = None
) -> list[DataSet]
Retrieves a list of knowledge bases.
Parameters
page: int
The current page number to retrieve from the paginated results. Defaults to 1.
page_size: int
The number of records on each page. Defaults to 1024.
order_by: str
The field by which the records should be sorted. This specifies the attribute or column used to order the results. Defaults to "create_time".
desc: bool
Whether the sorting should be in descending order. Defaults to True.
id: str
The id of the dataset to be got. Defaults to None.
name: str
The name of the dataset to be got. Defaults to None.
Returns
- Success: A list of
DataSetobjects representing the retrieved knowledge bases. - Failure:
Exception.
Examples
List all knowledge bases
for ds in rag_object.list_datasets():
print(ds)
Retrieve a knowledge base by ID
dataset = rag_object.list_datasets(id = "id_1")
print(dataset[0])
Update knowledge base
DataSet.update(update_message: dict)
Updates the current knowledge base.
Parameters
update_message: dict[str, str|int], Required
"name":strThe name of the knowledge base to update."tenant_id":strThe"tenant_idyou get after callingcreate_dataset(). ?????????????????????"embedding_model":strThe embedding model for generating vector embeddings.- Ensure that
"chunk_count"is0before updating"embedding_model".
- Ensure that
"parser_method":strThe default parsing method for the knowledge base."naive": General"manual: Manual"qa": Q&A"table": Table"paper": Paper"book": Book"laws": Laws"presentation": Presentation"picture": Picture"one":One"knowledge_graph": Knowledge Graph"email": Email
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag.list_datasets(name="kb_name")
dataset.update({"embedding_model":"BAAI/bge-zh-v1.5", "parse_method":"manual"})
:::tip API GROUPING File Management within Knowledge Base :::
Upload documents
DataSet.upload_documents(document_list: list[dict])
Updloads documents to the current knowledge base.
Parameters
document_list
A list of dictionaries representing the documents to upload, each containing the following keys:
"name": (Optional) File path to the document to upload.
Ensure that each file path has a suffix."blob": (Optional) The document to upload in binary format.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
dataset = rag.create_dataset(name="kb_name")
dataset.upload_documents([{"name": "1.txt", "blob": "123"}])
Update document
Document.update(update_message:dict)
Updates configurations for the current document.
Parameters
update_message: dict[str, str|int], Required
only name, parser_config, and parser_method can be changed
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset=rag.list_datasets(id='id')
dataset=dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
doc.update([{"parser_method": "manual"}])
Download document
Document.download() -> bytes
Returns
Bytes of the document.
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
ds=rag.list_datasets(id="id")
ds=ds[0]
doc = ds.list_documents(id="wdfxb5t547d")
doc = doc[0]
open("~/ragflow.txt", "wb+").write(doc.download())
print(doc)
List documents
Dataset.list_documents(id:str =None, keywords: str=None, offset: int=0, limit:int = 1024,order_by:str = "create_time", desc: bool = True) -> list[Document]
Parameters
id
The id of the document to retrieve.
keywords
List documents whose name has the given keywords. Defaults to None.
offset
The beginning number of records for paging. Defaults to 0.
limit
Records number to return, -1 means all of them. Records number to return, -1 means all of them.
orderby
The field by which the records should be sorted. This specifies the attribute or column used to order the results.
desc
A boolean flag indicating whether the sorting should be in descending order.
Returns
- Success: A list of
Documentobjects. - Failure:
Exception.
A Document object contains the following attributes:
idId of the retrieved document. Defaults to"".thumbnailThumbnail image of the retrieved document. Defaults to"".knowledgebase_idKnowledge base ID related to the document. Defaults to"".parser_methodMethod used to parse the document. Defaults to"".parser_config:ParserConfigConfiguration object for the parser. Defaults toNone.source_type: Source type of the document. Defaults to"".type: Type or category of the document. Defaults to"".created_by:strCreator of the document. Defaults to"".nameName or title of the document. Defaults to"".size:intSize of the document in bytes or some other unit. Defaults to0.token_count:intNumber of tokens in the document. Defaults to"".chunk_count:intNumber of chunks the document is split into. Defaults to0.progress:floatCurrent processing progress as a percentage. Defaults to0.0.progress_msg:strMessage indicating current progress status. Defaults to"".process_begin_at:datetimeStart time of the document processing. Defaults toNone.process_duation:floatDuration of the processing in seconds or minutes. Defaults to0.0.
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag.create_dataset(name="kb_1")
filename1 = "~/ragflow.txt"
blob=open(filename1 , "rb").read()
list_files=[{"name":filename1,"blob":blob}]
dataset.upload_documents(list_files)
for d in dataset.list_documents(keywords="rag", offset=0, limit=12):
print(d)
Delete documents
DataSet.delete_documents(ids: list[str] = None)
Deletes specified documents or all documents from the current knowledge base.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
ds = rag.list_datasets(name="kb_1")
ds = ds[0]
ds.delete_documents(ids=["id_1","id_2"])
Parse and stop parsing document
DataSet.async_parse_documents(document_ids:list[str]) -> None
DataSet.async_cancel_parse_documents(document_ids:list[str])-> None
Parameters
document_ids: list[str]
The IDs of the documents to parse.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
#documents parse and cancel
rag = RAGFlow(API_KEY, HOST_ADDRESS)
ds = rag.create_dataset(name="dataset_name")
documents = [
{'name': 'test1.txt', 'blob': open('./test_data/test1.txt',"rb").read()},
{'name': 'test2.txt', 'blob': open('./test_data/test2.txt',"rb").read()},
{'name': 'test3.txt', 'blob': open('./test_data/test3.txt',"rb").read()}
]
ds.upload_documents(documents)
documents=ds.list_documents(keywords="test")
ids=[]
for document in documents:
ids.append(document.id)
ds.async_parse_documents(ids)
print("Async bulk parsing initiated")
ds.async_cancel_parse_documents(ids)
print("Async bulk parsing cancelled")
List chunks
Document.list_chunks(keywords: str = None, offset: int = 0, limit: int = -1, id : str = None) -> list[Chunk]
Parameters
keywords
List chunks whose name has the given keywords. Defaults to None
offset
The beginning number of records for paging. Defaults to 1
limit
Records number to return. Default: 30
id
The ID of the chunk to retrieve. Default: None
Returns
list[chunk]
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
ds = rag.list_datasets("123")
ds = ds[0]
ds.async_parse_documents(["wdfxb5t547d"])
for c in doc.list_chunks(keywords="rag", offset=0, limit=12):
print(c)
Add chunk
Document.add_chunk(content:str) -> Chunk
Parameters
content: Required
The main text or information of the chunk.
important_keywords :list[str]
List the key terms or phrases that are significant or central to the chunk's content.
Returns
chunk
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag.list_datasets(id="123")
dtaset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
chunk = doc.add_chunk(content="xxxxxxx")
Delete chunk
Document.delete_chunks(chunk_ids: list[str])
Parameters
chunk_ids:list[str]
A list of chunk_id.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
ds = rag.list_datasets(id="123")
ds = ds[0]
doc = ds.list_documents(id="wdfxb5t547d")
doc = doc[0]
chunk = doc.add_chunk(content="xxxxxxx")
doc.delete_chunks(["id_1","id_2"])
Update chunk
Chunk.update(update_message: dict)
Parameters
update_message: Required
content:strContains the main text or information of the chunkimportant_keywords:list[str]List the key terms or phrases that are significant or central to the chunk's contentavailable:intIndicating the availability status,0means unavailable and1means available
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag.list_datasets(id="123")
dataset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
chunk = doc.add_chunk(content="xxxxxxx")
chunk.update({"content":"sdfx..."})
Retrieval
RAGFlow.retrieve(question:str="", datasets:list[str]=None, document=list[str]=None, offset:int=1, limit:int=30, similarity_threshold:float=0.2, vector_similarity_weight:float=0.3, top_k:int=1024,rerank_id:str=None,keyword:bool=False,higlight:bool=False) -> list[Chunk]
Parameters
question: str, Required
The user query or query keywords. Defaults to "".
datasets: list[Dataset], Required
The scope of datasets.
document: list[Document]
The scope of document. None means no limitation. Defaults to None.
offset: int
The beginning point of retrieved records. Defaults to 0.
limit: int
The maximum number of records needed to return. Defaults to 6.
Similarity_threshold: float
The minimum similarity score. Defaults to 0.2.
similarity_threshold_weight: float
The weight of vector cosine similarity, 1 - x is the term similarity weight. Defaults to 0.3.
top_k: int
Number of records engaged in vector cosine computaton. Defaults to 1024.
rerank_id:str
ID of the rerank model. Defaults to None.
keyword:bool
Indicating whether keyword-based matching is enabled (True) or disabled (False).
highlight:bool
Specifying whether to enable highlighting of matched terms in the results (True) or not (False).
Returns
list[Chunk]
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
ds = rag.list_datasets(name="ragflow")
ds = ds[0]
name = 'ragflow_test.txt'
path = './test_data/ragflow_test.txt'
rag.create_document(ds, name=name, blob=open(path, "rb").read())
doc = ds.list_documents(name=name)
doc = doc[0]
ds.async_parse_documents([doc.id])
for c in rag.retrieve(question="What's ragflow?",
datasets=[ds.id], documents=[doc.id],
offset=1, limit=30, similarity_threshold=0.2,
vector_similarity_weight=0.3,
top_k=1024
):
print(c)
:::tip API GROUPING Chat Assistant Management :::
Create chat assistant
RAGFlow.create_chat(
name: str = "assistant",
avatar: str = "path",
knowledgebases: list[DataSet] = [],
llm: Chat.LLM = None,
prompt: Chat.Prompt = None
) -> Chat
Creates a chat assistant.
Returns
- Success: A
Chatobject representing the chat assistant. - Failure:
Exception
The following shows the attributes of a Chat object:
name:strThe name of the chat assistant. Defaults to"assistant".avatar:strBase64 encoding of the avatar. Defaults to"".knowledgebases:list[str]The associated knowledge bases. Defaults to["kb1"].llm:LLMThe llm of the created chat. Defaults toNone. When the value isNone, a dictionary with the following values will be generated as the default.model_name,str
The chat model name. If it isNone, the user's default chat model will be returned.temperature,float
Controls the randomness of the model's predictions. A lower temperature increases the model's conficence in its responses; a higher temperature increases creativity and diversity. Defaults to0.1.top_p,float
Also known as “nucleus sampling”, this parameter sets a threshold to select a smaller set of words to sample from. It focuses on the most likely words, cutting off the less probable ones. Defaults to0.3presence_penalty,float
This discourages the model from repeating the same information by penalizing words that have already appeared in the conversation. Defaults to0.2.frequency penalty,float
Similar to the presence penalty, this reduces the model’s tendency to repeat the same words frequently. Defaults to0.7.max_token,int
This sets the maximum length of the model’s output, measured in the number of tokens (words or pieces of words). Defaults to512.
Prompt:PromptInstructions for the LLM to follow."similarity_threshold":floatA similarity score to evaluate distance between two lines of text. It's weighted keywords similarity and vector cosine similarity. If the similarity between query and chunk is less than this threshold, the chunk will be filtered out. Defaults to0.2."keywords_similarity_weight":floatIt's weighted keywords similarity and vector cosine similarity or rerank score (0~1). Defaults to0.7."top_n":intNot all the chunks whose similarity score is above the 'similarity threshold' will be feed to LLMs. LLM can only see these 'Top N' chunks. Defaults to8."variables":list[dict[]]If you use dialog APIs, the variables might help you chat with your clients with different strategies. The variables are used to fill in the 'System' part in prompt in order to give LLM a hint. The 'knowledge' is a very special variable which will be filled-in with the retrieved chunks. All the variables in 'System' should be curly bracketed. Defaults to[{"key": "knowledge", "optional": True}]"rerank_model":strIf it is not specified, vector cosine similarity will be used; otherwise, reranking score will be used. Defaults to"".
"empty_response":strIf nothing is retrieved in the knowledge base for the user's question, this will be used as the response. To allow the LLM to improvise when nothing is retrieved, leave this blank. Defaults toNone."opener":strThe opening greeting for the user. Defaults to"Hi! I am your assistant, can I help you?"."show_quote:boolIndicates whether the source of text should be displayed Defaults toTrue."prompt":strThe prompt content. Defaults toYou are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, your answer must include the sentence "The answer you are looking for is not found in the knowledge base!" Answers need to consider chat history. Here is the knowledge base: {knowledge} The above is the knowledge base..
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
knowledge_base = rag.list_datasets(name="kb_1")
assistant = rag.create_chat("Miss R", knowledgebases=knowledge_base)
Update chat
Chat.update(update_message: dict)
Updates the current chat assistant.
Parameters
update_message: dict[str, Any], Required
"name":strThe name of the chat assistant to update."avatar":strBase64 encoding of the avatar. Defaults to"""knowledgebases":list[str]Knowledge bases to update."llm":dictThe LLM settings:"model_name",strThe chat model name."temperature",floatControls the randomness of the model's predictions."top_p",floatAlso known as “nucleus sampling”, this parameter sets a threshold to select a smaller set of words to sample from."presence_penalty",floatThis discourages the model from repeating the same information by penalizing words that have appeared in the conversation."frequency penalty",floatSimilar to presence penalty, this reduces the model’s tendency to repeat the same words."max_token",intThis sets the maximum length of the model’s output, measured in the number of tokens (words or pieces of words).
"prompt": Instructions for the LLM to follow."similarity_threshold":floatA score to evaluate distance between two lines of text. It's weighted keywords similarity and vector cosine similarity. If the similarity between query and chunk is less than this threshold, the chunk will be filtered out. Defaults to0.2."keywords_similarity_weight":floatIt's weighted keywords similarity and vector cosine similarity or rerank score (0~1). Defaults to0.7."top_n":intNot all the chunks whose similarity score is above the 'similarity threshold' will be feed to LLMs. LLM can only see these 'Top N' chunks. Defaults to8."variables":list[dict[]]If you use dialog APIs, the variables might help you chat with your clients with different strategies. The variables are used to fill in the 'System' part in prompt in order to give LLM a hint. The 'knowledge' is a very special variable which will be filled-in with the retrieved chunks. All the variables in 'System' should be curly bracketed. Defaults to[{"key": "knowledge", "optional": True}]"rerank_model":strIf it is not specified, vector cosine similarity will be used; otherwise, reranking score will be used. Defaults to""."empty_response":strIf nothing is retrieved in the knowledge base for the user's question, this will be used as the response. To allow the LLM to improvise when nothing is retrieved, leave this blank. Defaults toNone."opener":strThe opening greeting for the user. Defaults to"Hi! I am your assistant, can I help you?"."show_quote:boolIndicates whether the source of text should be displayed Defaults toTrue."prompt":strThe prompt content. Defaults toYou are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, your answer must include the sentence "The answer you are looking for is not found in the knowledge base!" Answers need to consider chat history. Here is the knowledge base: {knowledge} The above is the knowledge base..
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
knowledge_base = rag.list_datasets(name="kb_1")
assistant = rag.create_chat("Miss R", knowledgebases=knowledge_base)
assistant.update({"name": "Stefan", "llm": {"temperature": 0.8}, "prompt": {"top_n": 8}})
Delete chats
Deletes specified chat assistants.
RAGFlow.delete_chats(ids: list[str] = None)
Parameters
ids
IDs of the chat assistants to delete. If not specified, all chat assistants will be deleted.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
rag.delete_chats(ids=["id_1","id_2"])
List chats
RAGFlow.list_chats(
page: int = 1,
page_size: int = 1024,
orderby: str = "create_time",
desc: bool = True,
id: str = None,
name: str = None
) -> list[Chat]
Retrieves a list of chat assistants.
Parameters
page
Specifies the page on which the records will be displayed. Defaults to 1.
page_size
The number of records on each page. Defaults to 1024.
order_by
The attribute by which the results are sorted. Defaults to "create_time".
desc
Indicates whether to sort the results in descending order. Defaults to True.
id: string
The ID of the chat to retrieve. Defaults to None.
name: string
The name of the chat to retrieve. Defaults to None.
Returns
- Success: A list of
Chatobjects. - Failure:
Exception.
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
for assistant in rag.list_chats():
print(assistant)
:::tip API GROUPING Chat-session APIs :::
Create session
Chat.create_session(name: str = "New session") -> Session
Creates a chat session.
Parameters
name
The name of the chat session to create.
Returns
- Success: A
Sessionobject containing the following attributes:id:strThe auto-generated unique identifier of the created session.name:strThe name of the created session.message:list[Message]The messages of the created session assistant. Default:[{"role": "assistant", "content": "Hi! I am your assistant,can I help you?"}]chat_id:strThe ID of the associated chat assistant.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag.list_chats(name="Miss R")
assistant = assistant[0]
session = assistant.create_session()
Update session
Session.update(update_message: dict)
Updates the current session.
Parameters
update_message: dict[str, Any], Required
"name":strThe name of the session to update.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag.list_chats(name="Miss R")
assistant = assistant[0]
session = assistant.create_session("session_name")
session.update({"name": "updated_name"})
Chat
Session.ask(question: str, stream: bool = False) -> Optional[Message, iter[Message]]
Asks a question to start a conversation.
Parameters
question Required
The question to start an AI chat. Defaults to None.
stream
Indicates whether to output responses in a streaming way:
True: Enable streaming.False: (Default) Disable streaming.
Returns
- A
Messageobject containing the response to the question ifstreamis set toFalse - An iterator containing multiple
messageobjects (iter[Message]) ifstreamis set toTrue
The following shows the attributes of a Message object:
id: str
The auto-generated message ID.
content: str
The content of the message. Defaults to "Hi! I am your assistant, can I help you?".
reference: list[Chunk]
A list of Chunk objects representing references to the message, each containing the following attributes:
- id:
str
The chunk ID. - content:
str
The content of the chunk. - image_id:
str
The ID of the snapshot of the chunk. - document_id:
str
The ID of the referenced document. - document_name:
str
The name of the referenced document. - position:
list[str]
The location information of the chunk within the referenced document. - knowledgebase_id:
str
The ID of the knowledge base to which the referenced document belongs. - similarity:
floatA composite similarity score of the chunk ranging from0to1, with a higher value indicating greater similarity. - vector_similarity:
float
A vector similarity score of the chunk ranging from0to1, with a higher value indicating greater similarity between vector embeddings. - term_similarity:
float
A keyword similarity score of the chunk ranging from0to1, with a higher value indicating greater similarity between keywords.
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag.list_chats(name="Miss R")
assistant = assistant[0]
session = assistant.create_session()
print("\n==================== Miss R =====================\n")
print(assistant.get_prologue())
while True:
question = input("\n==================== User =====================\n> ")
print("\n==================== Miss R =====================\n")
cont = ""
for ans in session.ask(question, stream=True):
print(answer.content[len(cont):], end='', flush=True)
cont = answer.content
List sessions
Chat.list_sessions(
page: int = 1,
page_size: int = 1024,
orderby: str = "create_time",
desc: bool = True,
id: str = None,
name: str = None
) -> list[Session]
Lists sessions associated with the current chat assistant.
Parameters
page
Specifies the page on which records will be displayed. Defaults to 1.
page_size
The number of records on each page. Defaults to 1024.
orderby
The field by which the records should be sorted. This specifies the attribute or column used to sort the results. Defaults to "create_time".
desc
Whether the sorting should be in descending order. Defaults to True.
id
The ID of the chat session to retrieve. Defaults to None.
name
The name of the chat to retrieve. Defaults to None.
Returns
- Success: A list of
Sessionobjects associated with the current chat assistant. - Failure:
Exception.
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag.list_chats(name="Miss R")
assistant = assistant[0]
for session in assistant.list_sessions():
print(session)
Delete sessions
Chat.delete_sessions(ids:list[str] = None)
Deletes specified sessions or all sessions associated with the current chat assistant.
Parameters
ids
IDs of the sessions to delete. If not specified, all sessions associated with the current chat assistant will be deleted.
Returns
- Success: No value is returned.
- Failure:
Exception
Examples
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag.list_chats(name="Miss R")
assistant = assistant[0]
assistant.delete_sessions(ids=["id_1","id_2"])