Spaces:
Sleeping
Sleeping
File size: 20,225 Bytes
cdde792 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 |
#!/usr/bin/env python3
"""
Streamlit app for interactive complexity metrics visualization.
"""
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import warnings
warnings.filterwarnings('ignore')
# Import visualization utilities
from visualization.utils import (
load_and_prepare_dataset,
get_available_turn_metrics,
get_human_friendly_metric_name,
clean_metric_values,
PLOT_PALETTE,
setup_plot_style
)
# Setup page config
st.set_page_config(
page_title="Complexity Metrics Explorer",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded"
)
# Cache data loading
@st.cache_data
def load_data(dataset_name):
"""Load and cache the dataset"""
df, df_exploded = load_and_prepare_dataset({
'dataset_name': dataset_name
})
return df, df_exploded
@st.cache_data
def get_metrics(df_exploded):
"""Get available metrics from the dataset"""
return get_available_turn_metrics(df_exploded)
def main():
st.title("π Complexity Metrics Explorer")
st.markdown("Interactive visualization of conversation complexity metrics across different dataset types.")
# Dataset selection
st.sidebar.header("ποΈ Dataset Selection")
# Available datasets
available_datasets = [
"jailbreaks_dataset_with_results_reduced",
"jailbreaks_dataset_with_results",
"jailbreaks_dataset_with_results_filtered_successful_jailbreak",
"Custom..."
]
selected_option = st.sidebar.selectbox(
"Select Dataset",
options=available_datasets,
index=0, # Default to reduced dataset
help="Choose which dataset to analyze"
)
# Handle custom dataset input
if selected_option == "Custom...":
selected_dataset = st.sidebar.text_input(
"Custom Dataset Name",
value="jailbreaks_dataset_with_results_reduced",
help="Enter the full dataset name (e.g., 'jailbreaks_dataset_with_results_reduced')"
)
if not selected_dataset.strip():
st.sidebar.warning("Please enter a dataset name")
st.stop()
else:
selected_dataset = selected_option
# Add refresh button
if st.sidebar.button("π Refresh Data", help="Clear cache and reload dataset"):
st.cache_data.clear()
st.rerun()
# Load data
with st.spinner(f"Loading dataset: {selected_dataset}..."):
try:
df, df_exploded = load_data(selected_dataset)
available_metrics = get_metrics(df_exploded)
# Display dataset info
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Dataset", selected_dataset.split('_')[-1].title())
with col2:
st.metric("Conversations", f"{len(df):,}")
with col3:
st.metric("Turns", f"{len(df_exploded):,}")
with col4:
st.metric("Metrics", len(available_metrics))
data_loaded = True
except Exception as e:
st.error(f"Error loading dataset: {e}")
st.info("Please check if the dataset exists and is accessible.")
st.info("π‘ Try using one of the predefined dataset options instead of custom input.")
data_loaded = False
if not data_loaded:
st.stop()
# Sidebar controls
st.sidebar.header("ποΈ Controls")
# Dataset type filter
dataset_types = df['type'].unique()
selected_types = st.sidebar.multiselect(
"Select Dataset Types",
options=dataset_types,
default=dataset_types,
help="Filter by conversation type"
)
# Role filter
if 'turn.role' in df_exploded.columns:
roles = df_exploded['turn.role'].unique()
selected_roles = st.sidebar.multiselect(
"Select Roles",
options=roles,
default=roles,
help="Filter by turn role"
)
else:
selected_roles = None
# Metric selection
st.sidebar.header("π Metrics")
# Dynamic metric categorization based on common patterns
def categorize_metrics(metrics):
"""Dynamically categorize metrics based on naming patterns"""
categories = {"All": metrics} # Always include all metrics
# Common patterns to look for
patterns = {
"Length": ['length', 'byte', 'word', 'token', 'char'],
"Readability": ['readability', 'flesch', 'standard'],
"Compression": ['lzw', 'compression'],
"Language Model": ['ll_', 'rll_', 'logprob'],
"Working Memory": ['wm_'],
"Discourse": ['discourse'],
"Evaluation": ['rubric', 'evaluation', 'stealth'],
"Distribution": ['zipf', 'type_token'],
"Coherence": ['coherence'],
"Entity": ['entity', 'entities'],
"Cognitive": ['cognitive', 'load'],
}
# Categorize metrics
for category, keywords in patterns.items():
matching_metrics = [m for m in metrics if any(keyword in m.lower() for keyword in keywords)]
if matching_metrics:
categories[category] = matching_metrics
# Find uncategorized metrics
categorized = set()
for cat_metrics in categories.values():
if cat_metrics != metrics: # Skip "All" category
categorized.update(cat_metrics)
uncategorized = [m for m in metrics if m not in categorized]
if uncategorized:
categories["Other"] = uncategorized
return categories
metric_categories = categorize_metrics(available_metrics)
# Metric selection interface
selection_mode = st.sidebar.radio(
"Selection Mode",
["By Category", "Search/Filter", "Select All"],
help="Choose how to select metrics"
)
if selection_mode == "By Category":
selected_category = st.sidebar.selectbox(
"Metric Category",
options=list(metric_categories.keys()),
help=f"Found {len(metric_categories)} categories"
)
available_in_category = metric_categories[selected_category]
default_selection = available_in_category[:5] if len(available_in_category) > 5 else available_in_category
# Add select all button for category
col1, col2 = st.sidebar.columns(2)
with col1:
if st.button("Select All", key="select_all_category"):
st.session_state.selected_metrics_category = available_in_category
with col2:
if st.button("Clear All", key="clear_all_category"):
st.session_state.selected_metrics_category = []
# Use session state for persistence
if "selected_metrics_category" not in st.session_state:
st.session_state.selected_metrics_category = default_selection
selected_metrics = st.sidebar.multiselect(
f"Select Metrics ({len(available_in_category)} available)",
options=available_in_category,
default=st.session_state.selected_metrics_category,
key="metrics_multiselect_category",
help="Choose metrics to visualize"
)
elif selection_mode == "Search/Filter":
search_term = st.sidebar.text_input(
"Search Metrics",
placeholder="Enter keywords to filter metrics...",
help="Search for metrics containing specific terms"
)
if search_term:
filtered_metrics = [m for m in available_metrics if search_term.lower() in m.lower()]
else:
filtered_metrics = available_metrics
st.sidebar.write(f"Found {len(filtered_metrics)} metrics")
# Add select all button for search results
col1, col2 = st.sidebar.columns(2)
with col1:
if st.button("Select All", key="select_all_search"):
st.session_state.selected_metrics_search = filtered_metrics
with col2:
if st.button("Clear All", key="clear_all_search"):
st.session_state.selected_metrics_search = []
# Use session state for persistence
if "selected_metrics_search" not in st.session_state:
st.session_state.selected_metrics_search = filtered_metrics[:5] if len(filtered_metrics) > 5 else filtered_metrics[:3]
selected_metrics = st.sidebar.multiselect(
"Select Metrics",
options=filtered_metrics,
default=st.session_state.selected_metrics_search,
key="metrics_multiselect_search",
help="Choose metrics to visualize"
)
else: # Select All
# Add select all button for all metrics
col1, col2 = st.sidebar.columns(2)
with col1:
if st.button("Select All", key="select_all_all"):
st.session_state.selected_metrics_all = available_metrics
with col2:
if st.button("Clear All", key="clear_all_all"):
st.session_state.selected_metrics_all = []
# Use session state for persistence
if "selected_metrics_all" not in st.session_state:
st.session_state.selected_metrics_all = available_metrics[:10] # Limit default to first 10 for performance
selected_metrics = st.sidebar.multiselect(
f"All Metrics ({len(available_metrics)} total)",
options=available_metrics,
default=st.session_state.selected_metrics_all,
key="metrics_multiselect_all",
help="All available metrics - be careful with performance for large selections"
)
# Show selection summary
if selected_metrics:
st.sidebar.success(f"Selected {len(selected_metrics)} metrics")
# Performance warning for large selections
if len(selected_metrics) > 20:
st.sidebar.warning(f"β οΈ Large selection ({len(selected_metrics)} metrics) may impact performance")
elif len(selected_metrics) > 50:
st.sidebar.error(f"π¨ Very large selection ({len(selected_metrics)} metrics) - consider reducing for better performance")
else:
st.sidebar.warning("No metrics selected")
# Metric info expander
with st.sidebar.expander("βΉοΈ Metric Information", expanded=False):
st.write(f"**Total Available Metrics:** {len(available_metrics)}")
st.write(f"**Categories Found:** {len(metric_categories)}")
if st.checkbox("Show all metric names", key="show_all_metrics"):
st.write("**All Available Metrics:**")
for i, metric in enumerate(available_metrics, 1):
st.write(f"{i}. `{metric}`")
# Filter data
filtered_df = df[df['type'].isin(selected_types)] if selected_types else df
filtered_df_exploded = df_exploded[df_exploded['type'].isin(selected_types)] if selected_types else df_exploded
if selected_roles and 'turn.role' in filtered_df_exploded.columns:
filtered_df_exploded = filtered_df_exploded[filtered_df_exploded['turn.role'].isin(selected_roles)]
# Main content tabs
tab1, tab2, tab3, tab4 = st.tabs(["π Distributions", "π Correlations", "π Comparisons", "π― Details"])
with tab1:
st.header("Distribution Analysis")
if not selected_metrics:
st.warning("Please select at least one metric to visualize.")
return
# Create distribution plots
for metric in selected_metrics:
full_metric_name = f"turn.turn_metrics.{metric}"
if full_metric_name not in filtered_df_exploded.columns:
st.warning(f"Metric {metric} not found in dataset")
continue
st.subheader(f"π {get_human_friendly_metric_name(metric)}")
# Clean the data
metric_data = filtered_df_exploded[['type', full_metric_name]].copy()
metric_data = metric_data.dropna()
if len(metric_data) == 0:
st.warning(f"No data available for {metric}")
continue
# Create plotly histogram
fig = px.histogram(
metric_data,
x=full_metric_name,
color='type',
marginal='box',
title=f"Distribution of {get_human_friendly_metric_name(metric)}",
color_discrete_map=PLOT_PALETTE if len(selected_types) <= 3 else None,
opacity=0.7,
nbins=50
)
fig.update_layout(
xaxis_title=get_human_friendly_metric_name(metric),
yaxis_title="Count",
height=400
)
st.plotly_chart(fig, use_container_width=True)
# Summary statistics
col1, col2 = st.columns(2)
with col1:
st.write("**Summary Statistics**")
summary_stats = metric_data.groupby('type')[full_metric_name].agg(['count', 'mean', 'std', 'min', 'max']).round(3)
st.dataframe(summary_stats)
with col2:
st.write("**Percentiles**")
percentiles = metric_data.groupby('type')[full_metric_name].quantile([0.25, 0.5, 0.75]).unstack().round(3)
percentiles.columns = ['25%', '50%', '75%']
st.dataframe(percentiles)
with tab2:
st.header("Correlation Analysis")
if len(selected_metrics) < 2:
st.warning("Please select at least 2 metrics for correlation analysis.")
else:
# Prepare correlation data
corr_columns = [f"turn.turn_metrics.{m}" for m in selected_metrics]
corr_data = filtered_df_exploded[corr_columns + ['type']].copy()
# Clean column names for display
corr_data.columns = [get_human_friendly_metric_name(col.replace('turn.turn_metrics.', '')) if col.startswith('turn.turn_metrics.') else col for col in corr_data.columns]
# Calculate correlation matrix
corr_matrix = corr_data.select_dtypes(include=[np.number]).corr()
# Create correlation heatmap
fig = px.imshow(
corr_matrix,
text_auto=True,
aspect="auto",
title="Correlation Matrix",
color_continuous_scale='RdBu_r',
zmin=-1, zmax=1
)
fig.update_layout(height=600)
st.plotly_chart(fig, use_container_width=True)
# Scatter plots for strong correlations
st.subheader("Strong Correlations")
# Find strong correlations (>0.7 or <-0.7)
strong_corrs = []
for i in range(len(corr_matrix.columns)):
for j in range(i+1, len(corr_matrix.columns)):
corr_val = corr_matrix.iloc[i, j]
if abs(corr_val) > 0.7:
strong_corrs.append((corr_matrix.columns[i], corr_matrix.columns[j], corr_val))
if strong_corrs:
for metric1, metric2, corr_val in strong_corrs[:3]: # Show top 3
fig = px.scatter(
corr_data,
x=metric1,
y=metric2,
color='type',
title=f"{metric1} vs {metric2} (r={corr_val:.3f})",
color_discrete_map=PLOT_PALETTE if len(selected_types) <= 3 else None,
opacity=0.6
)
st.plotly_chart(fig, use_container_width=True)
else:
st.info("No strong correlations (|r| > 0.7) found between selected metrics.")
with tab3:
st.header("Type Comparisons")
if not selected_metrics:
st.warning("Please select at least one metric to compare.")
else:
# Box plots for each metric
for metric in selected_metrics:
full_metric_name = f"turn.turn_metrics.{metric}"
if full_metric_name not in filtered_df_exploded.columns:
continue
st.subheader(f"π¦ {get_human_friendly_metric_name(metric)} by Type")
# Create box plot
fig = px.box(
filtered_df_exploded.dropna(subset=[full_metric_name]),
x='type',
y=full_metric_name,
title=f"Distribution of {get_human_friendly_metric_name(metric)} by Type",
color='type',
color_discrete_map=PLOT_PALETTE if len(selected_types) <= 3 else None
)
fig.update_layout(
xaxis_title="Dataset Type",
yaxis_title=get_human_friendly_metric_name(metric),
height=400
)
st.plotly_chart(fig, use_container_width=True)
with tab4:
st.header("Detailed View")
# Data overview
st.subheader("π Dataset Overview")
st.info(f"**Current Dataset:** `{selected_dataset}`")
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Total Conversations", len(filtered_df))
with col2:
st.metric("Total Turns", len(filtered_df_exploded))
with col3:
st.metric("Available Metrics", len(available_metrics))
# Type distribution
st.subheader("π Type Distribution")
type_counts = filtered_df['type'].value_counts()
fig = px.pie(
values=type_counts.values,
names=type_counts.index,
title="Distribution of Conversation Types",
color_discrete_map=PLOT_PALETTE if len(type_counts) <= 3 else None
)
st.plotly_chart(fig, use_container_width=True)
# Sample data
st.subheader("π Sample Data")
if st.checkbox("Show raw data sample"):
sample_cols = ['type'] + [f"turn.turn_metrics.{m}" for m in selected_metrics if f"turn.turn_metrics.{m}" in filtered_df_exploded.columns]
sample_data = filtered_df_exploded[sample_cols].head(100)
st.dataframe(sample_data)
# Metric availability
st.subheader("π Metric Availability")
metric_completeness = {}
for metric in selected_metrics:
full_metric_name = f"turn.turn_metrics.{metric}"
if full_metric_name in filtered_df_exploded.columns:
completeness = (1 - filtered_df_exploded[full_metric_name].isna().sum() / len(filtered_df_exploded)) * 100
metric_completeness[get_human_friendly_metric_name(metric)] = completeness
if metric_completeness:
completeness_df = pd.DataFrame(list(metric_completeness.items()), columns=['Metric', 'Completeness (%)'])
fig = px.bar(
completeness_df,
x='Metric',
y='Completeness (%)',
title="Data Completeness by Metric",
color='Completeness (%)',
color_continuous_scale='Viridis'
)
fig.update_layout(xaxis_tickangle=-45, height=400)
st.plotly_chart(fig, use_container_width=True)
if __name__ == "__main__":
main()
|