Visualizer / streamlit_app.py
acmc's picture
Create streamlit_app.py
cdde792 verified
raw
history blame
20.2 kB
#!/usr/bin/env python3
"""
Streamlit app for interactive complexity metrics visualization.
"""
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import warnings
warnings.filterwarnings('ignore')
# Import visualization utilities
from visualization.utils import (
load_and_prepare_dataset,
get_available_turn_metrics,
get_human_friendly_metric_name,
clean_metric_values,
PLOT_PALETTE,
setup_plot_style
)
# Setup page config
st.set_page_config(
page_title="Complexity Metrics Explorer",
page_icon="πŸ“Š",
layout="wide",
initial_sidebar_state="expanded"
)
# Cache data loading
@st.cache_data
def load_data(dataset_name):
"""Load and cache the dataset"""
df, df_exploded = load_and_prepare_dataset({
'dataset_name': dataset_name
})
return df, df_exploded
@st.cache_data
def get_metrics(df_exploded):
"""Get available metrics from the dataset"""
return get_available_turn_metrics(df_exploded)
def main():
st.title("πŸ” Complexity Metrics Explorer")
st.markdown("Interactive visualization of conversation complexity metrics across different dataset types.")
# Dataset selection
st.sidebar.header("πŸ—‚οΈ Dataset Selection")
# Available datasets
available_datasets = [
"jailbreaks_dataset_with_results_reduced",
"jailbreaks_dataset_with_results",
"jailbreaks_dataset_with_results_filtered_successful_jailbreak",
"Custom..."
]
selected_option = st.sidebar.selectbox(
"Select Dataset",
options=available_datasets,
index=0, # Default to reduced dataset
help="Choose which dataset to analyze"
)
# Handle custom dataset input
if selected_option == "Custom...":
selected_dataset = st.sidebar.text_input(
"Custom Dataset Name",
value="jailbreaks_dataset_with_results_reduced",
help="Enter the full dataset name (e.g., 'jailbreaks_dataset_with_results_reduced')"
)
if not selected_dataset.strip():
st.sidebar.warning("Please enter a dataset name")
st.stop()
else:
selected_dataset = selected_option
# Add refresh button
if st.sidebar.button("πŸ”„ Refresh Data", help="Clear cache and reload dataset"):
st.cache_data.clear()
st.rerun()
# Load data
with st.spinner(f"Loading dataset: {selected_dataset}..."):
try:
df, df_exploded = load_data(selected_dataset)
available_metrics = get_metrics(df_exploded)
# Display dataset info
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Dataset", selected_dataset.split('_')[-1].title())
with col2:
st.metric("Conversations", f"{len(df):,}")
with col3:
st.metric("Turns", f"{len(df_exploded):,}")
with col4:
st.metric("Metrics", len(available_metrics))
data_loaded = True
except Exception as e:
st.error(f"Error loading dataset: {e}")
st.info("Please check if the dataset exists and is accessible.")
st.info("πŸ’‘ Try using one of the predefined dataset options instead of custom input.")
data_loaded = False
if not data_loaded:
st.stop()
# Sidebar controls
st.sidebar.header("πŸŽ›οΈ Controls")
# Dataset type filter
dataset_types = df['type'].unique()
selected_types = st.sidebar.multiselect(
"Select Dataset Types",
options=dataset_types,
default=dataset_types,
help="Filter by conversation type"
)
# Role filter
if 'turn.role' in df_exploded.columns:
roles = df_exploded['turn.role'].unique()
selected_roles = st.sidebar.multiselect(
"Select Roles",
options=roles,
default=roles,
help="Filter by turn role"
)
else:
selected_roles = None
# Metric selection
st.sidebar.header("πŸ“Š Metrics")
# Dynamic metric categorization based on common patterns
def categorize_metrics(metrics):
"""Dynamically categorize metrics based on naming patterns"""
categories = {"All": metrics} # Always include all metrics
# Common patterns to look for
patterns = {
"Length": ['length', 'byte', 'word', 'token', 'char'],
"Readability": ['readability', 'flesch', 'standard'],
"Compression": ['lzw', 'compression'],
"Language Model": ['ll_', 'rll_', 'logprob'],
"Working Memory": ['wm_'],
"Discourse": ['discourse'],
"Evaluation": ['rubric', 'evaluation', 'stealth'],
"Distribution": ['zipf', 'type_token'],
"Coherence": ['coherence'],
"Entity": ['entity', 'entities'],
"Cognitive": ['cognitive', 'load'],
}
# Categorize metrics
for category, keywords in patterns.items():
matching_metrics = [m for m in metrics if any(keyword in m.lower() for keyword in keywords)]
if matching_metrics:
categories[category] = matching_metrics
# Find uncategorized metrics
categorized = set()
for cat_metrics in categories.values():
if cat_metrics != metrics: # Skip "All" category
categorized.update(cat_metrics)
uncategorized = [m for m in metrics if m not in categorized]
if uncategorized:
categories["Other"] = uncategorized
return categories
metric_categories = categorize_metrics(available_metrics)
# Metric selection interface
selection_mode = st.sidebar.radio(
"Selection Mode",
["By Category", "Search/Filter", "Select All"],
help="Choose how to select metrics"
)
if selection_mode == "By Category":
selected_category = st.sidebar.selectbox(
"Metric Category",
options=list(metric_categories.keys()),
help=f"Found {len(metric_categories)} categories"
)
available_in_category = metric_categories[selected_category]
default_selection = available_in_category[:5] if len(available_in_category) > 5 else available_in_category
# Add select all button for category
col1, col2 = st.sidebar.columns(2)
with col1:
if st.button("Select All", key="select_all_category"):
st.session_state.selected_metrics_category = available_in_category
with col2:
if st.button("Clear All", key="clear_all_category"):
st.session_state.selected_metrics_category = []
# Use session state for persistence
if "selected_metrics_category" not in st.session_state:
st.session_state.selected_metrics_category = default_selection
selected_metrics = st.sidebar.multiselect(
f"Select Metrics ({len(available_in_category)} available)",
options=available_in_category,
default=st.session_state.selected_metrics_category,
key="metrics_multiselect_category",
help="Choose metrics to visualize"
)
elif selection_mode == "Search/Filter":
search_term = st.sidebar.text_input(
"Search Metrics",
placeholder="Enter keywords to filter metrics...",
help="Search for metrics containing specific terms"
)
if search_term:
filtered_metrics = [m for m in available_metrics if search_term.lower() in m.lower()]
else:
filtered_metrics = available_metrics
st.sidebar.write(f"Found {len(filtered_metrics)} metrics")
# Add select all button for search results
col1, col2 = st.sidebar.columns(2)
with col1:
if st.button("Select All", key="select_all_search"):
st.session_state.selected_metrics_search = filtered_metrics
with col2:
if st.button("Clear All", key="clear_all_search"):
st.session_state.selected_metrics_search = []
# Use session state for persistence
if "selected_metrics_search" not in st.session_state:
st.session_state.selected_metrics_search = filtered_metrics[:5] if len(filtered_metrics) > 5 else filtered_metrics[:3]
selected_metrics = st.sidebar.multiselect(
"Select Metrics",
options=filtered_metrics,
default=st.session_state.selected_metrics_search,
key="metrics_multiselect_search",
help="Choose metrics to visualize"
)
else: # Select All
# Add select all button for all metrics
col1, col2 = st.sidebar.columns(2)
with col1:
if st.button("Select All", key="select_all_all"):
st.session_state.selected_metrics_all = available_metrics
with col2:
if st.button("Clear All", key="clear_all_all"):
st.session_state.selected_metrics_all = []
# Use session state for persistence
if "selected_metrics_all" not in st.session_state:
st.session_state.selected_metrics_all = available_metrics[:10] # Limit default to first 10 for performance
selected_metrics = st.sidebar.multiselect(
f"All Metrics ({len(available_metrics)} total)",
options=available_metrics,
default=st.session_state.selected_metrics_all,
key="metrics_multiselect_all",
help="All available metrics - be careful with performance for large selections"
)
# Show selection summary
if selected_metrics:
st.sidebar.success(f"Selected {len(selected_metrics)} metrics")
# Performance warning for large selections
if len(selected_metrics) > 20:
st.sidebar.warning(f"⚠️ Large selection ({len(selected_metrics)} metrics) may impact performance")
elif len(selected_metrics) > 50:
st.sidebar.error(f"🚨 Very large selection ({len(selected_metrics)} metrics) - consider reducing for better performance")
else:
st.sidebar.warning("No metrics selected")
# Metric info expander
with st.sidebar.expander("ℹ️ Metric Information", expanded=False):
st.write(f"**Total Available Metrics:** {len(available_metrics)}")
st.write(f"**Categories Found:** {len(metric_categories)}")
if st.checkbox("Show all metric names", key="show_all_metrics"):
st.write("**All Available Metrics:**")
for i, metric in enumerate(available_metrics, 1):
st.write(f"{i}. `{metric}`")
# Filter data
filtered_df = df[df['type'].isin(selected_types)] if selected_types else df
filtered_df_exploded = df_exploded[df_exploded['type'].isin(selected_types)] if selected_types else df_exploded
if selected_roles and 'turn.role' in filtered_df_exploded.columns:
filtered_df_exploded = filtered_df_exploded[filtered_df_exploded['turn.role'].isin(selected_roles)]
# Main content tabs
tab1, tab2, tab3, tab4 = st.tabs(["πŸ“Š Distributions", "πŸ”— Correlations", "πŸ“ˆ Comparisons", "🎯 Details"])
with tab1:
st.header("Distribution Analysis")
if not selected_metrics:
st.warning("Please select at least one metric to visualize.")
return
# Create distribution plots
for metric in selected_metrics:
full_metric_name = f"turn.turn_metrics.{metric}"
if full_metric_name not in filtered_df_exploded.columns:
st.warning(f"Metric {metric} not found in dataset")
continue
st.subheader(f"πŸ“Š {get_human_friendly_metric_name(metric)}")
# Clean the data
metric_data = filtered_df_exploded[['type', full_metric_name]].copy()
metric_data = metric_data.dropna()
if len(metric_data) == 0:
st.warning(f"No data available for {metric}")
continue
# Create plotly histogram
fig = px.histogram(
metric_data,
x=full_metric_name,
color='type',
marginal='box',
title=f"Distribution of {get_human_friendly_metric_name(metric)}",
color_discrete_map=PLOT_PALETTE if len(selected_types) <= 3 else None,
opacity=0.7,
nbins=50
)
fig.update_layout(
xaxis_title=get_human_friendly_metric_name(metric),
yaxis_title="Count",
height=400
)
st.plotly_chart(fig, use_container_width=True)
# Summary statistics
col1, col2 = st.columns(2)
with col1:
st.write("**Summary Statistics**")
summary_stats = metric_data.groupby('type')[full_metric_name].agg(['count', 'mean', 'std', 'min', 'max']).round(3)
st.dataframe(summary_stats)
with col2:
st.write("**Percentiles**")
percentiles = metric_data.groupby('type')[full_metric_name].quantile([0.25, 0.5, 0.75]).unstack().round(3)
percentiles.columns = ['25%', '50%', '75%']
st.dataframe(percentiles)
with tab2:
st.header("Correlation Analysis")
if len(selected_metrics) < 2:
st.warning("Please select at least 2 metrics for correlation analysis.")
else:
# Prepare correlation data
corr_columns = [f"turn.turn_metrics.{m}" for m in selected_metrics]
corr_data = filtered_df_exploded[corr_columns + ['type']].copy()
# Clean column names for display
corr_data.columns = [get_human_friendly_metric_name(col.replace('turn.turn_metrics.', '')) if col.startswith('turn.turn_metrics.') else col for col in corr_data.columns]
# Calculate correlation matrix
corr_matrix = corr_data.select_dtypes(include=[np.number]).corr()
# Create correlation heatmap
fig = px.imshow(
corr_matrix,
text_auto=True,
aspect="auto",
title="Correlation Matrix",
color_continuous_scale='RdBu_r',
zmin=-1, zmax=1
)
fig.update_layout(height=600)
st.plotly_chart(fig, use_container_width=True)
# Scatter plots for strong correlations
st.subheader("Strong Correlations")
# Find strong correlations (>0.7 or <-0.7)
strong_corrs = []
for i in range(len(corr_matrix.columns)):
for j in range(i+1, len(corr_matrix.columns)):
corr_val = corr_matrix.iloc[i, j]
if abs(corr_val) > 0.7:
strong_corrs.append((corr_matrix.columns[i], corr_matrix.columns[j], corr_val))
if strong_corrs:
for metric1, metric2, corr_val in strong_corrs[:3]: # Show top 3
fig = px.scatter(
corr_data,
x=metric1,
y=metric2,
color='type',
title=f"{metric1} vs {metric2} (r={corr_val:.3f})",
color_discrete_map=PLOT_PALETTE if len(selected_types) <= 3 else None,
opacity=0.6
)
st.plotly_chart(fig, use_container_width=True)
else:
st.info("No strong correlations (|r| > 0.7) found between selected metrics.")
with tab3:
st.header("Type Comparisons")
if not selected_metrics:
st.warning("Please select at least one metric to compare.")
else:
# Box plots for each metric
for metric in selected_metrics:
full_metric_name = f"turn.turn_metrics.{metric}"
if full_metric_name not in filtered_df_exploded.columns:
continue
st.subheader(f"πŸ“¦ {get_human_friendly_metric_name(metric)} by Type")
# Create box plot
fig = px.box(
filtered_df_exploded.dropna(subset=[full_metric_name]),
x='type',
y=full_metric_name,
title=f"Distribution of {get_human_friendly_metric_name(metric)} by Type",
color='type',
color_discrete_map=PLOT_PALETTE if len(selected_types) <= 3 else None
)
fig.update_layout(
xaxis_title="Dataset Type",
yaxis_title=get_human_friendly_metric_name(metric),
height=400
)
st.plotly_chart(fig, use_container_width=True)
with tab4:
st.header("Detailed View")
# Data overview
st.subheader("πŸ“‹ Dataset Overview")
st.info(f"**Current Dataset:** `{selected_dataset}`")
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Total Conversations", len(filtered_df))
with col2:
st.metric("Total Turns", len(filtered_df_exploded))
with col3:
st.metric("Available Metrics", len(available_metrics))
# Type distribution
st.subheader("πŸ“Š Type Distribution")
type_counts = filtered_df['type'].value_counts()
fig = px.pie(
values=type_counts.values,
names=type_counts.index,
title="Distribution of Conversation Types",
color_discrete_map=PLOT_PALETTE if len(type_counts) <= 3 else None
)
st.plotly_chart(fig, use_container_width=True)
# Sample data
st.subheader("πŸ“„ Sample Data")
if st.checkbox("Show raw data sample"):
sample_cols = ['type'] + [f"turn.turn_metrics.{m}" for m in selected_metrics if f"turn.turn_metrics.{m}" in filtered_df_exploded.columns]
sample_data = filtered_df_exploded[sample_cols].head(100)
st.dataframe(sample_data)
# Metric availability
st.subheader("πŸ“Š Metric Availability")
metric_completeness = {}
for metric in selected_metrics:
full_metric_name = f"turn.turn_metrics.{metric}"
if full_metric_name in filtered_df_exploded.columns:
completeness = (1 - filtered_df_exploded[full_metric_name].isna().sum() / len(filtered_df_exploded)) * 100
metric_completeness[get_human_friendly_metric_name(metric)] = completeness
if metric_completeness:
completeness_df = pd.DataFrame(list(metric_completeness.items()), columns=['Metric', 'Completeness (%)'])
fig = px.bar(
completeness_df,
x='Metric',
y='Completeness (%)',
title="Data Completeness by Metric",
color='Completeness (%)',
color_continuous_scale='Viridis'
)
fig.update_layout(xaxis_tickangle=-45, height=400)
st.plotly_chart(fig, use_container_width=True)
if __name__ == "__main__":
main()