Spaces:
Sleeping
Sleeping
File size: 13,811 Bytes
473ecb1 cd763ab 32a05cd cd763ab 32a05cd cd763ab 32a05cd cd763ab 32a05cd cd763ab 32a05cd 473ecb1 32a05cd 473ecb1 cd763ab 32a05cd 473ecb1 32a05cd 473ecb1 32a05cd 473ecb1 32a05cd 473ecb1 32a05cd 473ecb1 32a05cd 5c92964 32a05cd 5c92964 473ecb1 5c92964 32a05cd 5c92964 32a05cd 473ecb1 5c92964 473ecb1 32a05cd 473ecb1 32a05cd 5c92964 32a05cd 473ecb1 32a05cd 473ecb1 32a05cd 473ecb1 32a05cd 473ecb1 32a05cd 473ecb1 5c92964 32a05cd 5c92964 32a05cd 5c92964 32a05cd 473ecb1 5c92964 473ecb1 5c92964 473ecb1 32a05cd 473ecb1 32a05cd 473ecb1 32a05cd 5c92964 32a05cd 473ecb1 32a05cd 5c92964 32a05cd 473ecb1 32a05cd 5c92964 473ecb1 32a05cd 473ecb1 5c92964 32a05cd 5c92964 32a05cd 5c92964 473ecb1 32a05cd 473ecb1 32a05cd 473ecb1 5c92964 473ecb1 32a05cd 473ecb1 32a05cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import math
import time
import random
from google import genai
import google.generativeai as genai_ext
from google.cloud import aiplatform
from transformers import pipeline
from google.genai import types
import gradio as gr
import os, tempfile
import torch
# --- Env & GCP setup ---
creds_json = os.getenv("GCP_CREDS_JSON")
if not creds_json:
raise Exception("⚠️ Missing GCP_CREDS_JSON secret!")
# Save to temp file (dev convenience) - secure this in production
with tempfile.NamedTemporaryFile(mode='w+', delete=False) as tmpfile:
tmpfile.write(creds_json)
creds_path = tmpfile.name
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = creds_path
# Initialize GCP API (replace project/location as needed)
aiplatform.init(project="emotionmodel-466815", location="us-central1")
# --- LLM / Gemini setup ---
apikey = os.environ.get("GEMINI_API_KEY")
if not apikey:
raise Exception("⚠️ Missing GEMINI_API_KEY secret!")
# Configure Gemini API for drafting
genai_ext.configure(api_key=apikey)
llm_model = genai_ext.GenerativeModel('gemini-1.5-pro')
# --- Classifier pipelines ---
emotion_classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base") # D
language_detector = pipeline("text-classification", model="papluca/xlm-roberta-base-language-detection") # C
bias_classifier = pipeline("text-classification", model="unitary/toxic-bert") # toxicity -> used for M and B
# --- Empathy formula ---
def calculate_empathy_score(D, R, M, C, B, O, I, alpha=0.35, beta=0.22, gamma=0.26, epsilon=0.17, delta=0.4, zeta=0.0, iota=0.12):
"""Updated E' without O factor (we keep zeta=0.0 for safety)."""
inner_sum = epsilon * C + alpha * (D ** 2) + gamma * M + beta * math.log(R + 1) + iota * I
sig = 1 / (1 + math.exp(-inner_sum))
# B is applied as a penalty multiplicative term
E = sig * (1 - delta * B)
return E
# --- Vertex client (if still needed elsewhere) ---
client = genai.Client(
vertexai=True,
project="217758598930",
location="us-central1",
)
model = "projects/217758598930/locations/us-central1/endpoints/1940344453420023808"
generate_content_config = types.GenerateContentConfig(
temperature=0.9,
top_p=0.95,
seed=0,
max_output_tokens=150,
safety_settings=[
types.SafetySetting(category="HARM_CATEGORY_HATE_SPEECH", threshold="BLOCK_NONE"),
types.SafetySetting(category="HARM_CATEGORY_DANGEROUS_CONTENT", threshold="BLOCK_NONE"),
types.SafetySetting(category="HARM_CATEGORY_SEXUALLY_EXPLICIT", threshold="BLOCK_NONE"),
types.SafetySetting(category="HARM_CATEGORY_HARASSMENT", threshold="BLOCK_NONE")
],
thinking_config=types.ThinkingConfig(thinking_budget=-1),
)
# --- Helper functions ---
HINDI_KEYWORDS = set(["bhai", "yaar", "bata", "kya", "kaise", "nahi", "achha", "chal", "thanks", "dhanyavaad", "yaarr"])
def detect_hinglish(text, lang_label):
"""Return True if text is likely Hinglish (code-mixed) or Hindi/English match.
We use the language_detector label and token heuristics for romanized Hindi detection."""
text_tokens = set(word.strip(".,!?\"'()") for word in text.split())
# if model detects Hindi or English directly
if lang_label == 'hi':
return True
# quick romanized-hindi check
if any(tok in HINDI_KEYWORDS for tok in text_tokens):
return True
# if label is ambiguous or contains Devanagari characters
if any('\u0900' <= ch <= '\u097F' for ch in text):
return True
return False
# --- Chatbot class with full history & fixes applied ---
class HumanLikeChatbot:
def __init__(self):
# raw history to display in UI
self.history = [] # list of tuples (user_msg, bot_reply)
# structured history with emotions and moods for LLM prompting
# list of tuples: (speaker, message, detected_emotion, bot_mood_at_time)
self.history_with_emotions = []
self.bot_mood = "neutral"
self.irritation_level = 0.0
self.toxicity_history = [] # rolling window
self.repair_cooldown = 0 # turns left where bot prioritizes repair
def add_to_history(self, speaker, message, detected_emotion=None, mood_at_time=None, bot_reply=None):
"""Add entries to both UI history and structured history.
speaker: 'User' or 'Bot'
message: text
detected_emotion: emotion label detected for user messages
mood_at_time: bot mood when message was produced
bot_reply: if speaker=='User' and we also want to save the bot reply for UI"""
if speaker == 'User':
# append a placeholder for bot reply in UI history; will be updated when bot responds
self.history.append((message, bot_reply if bot_reply is not None else ""))
self.history_with_emotions.append(('User', message, detected_emotion, mood_at_time))
else:
# speaker is Bot: attach reply to latest UI entry
if self.history:
last_user, _ = self.history[-1]
self.history[-1] = (last_user, message)
else:
# no user entry (unlikely) — just append
self.history.append(("", message))
self.history_with_emotions.append(('Bot', message, detected_emotion, mood_at_time))
def format_history_for_prompt(self, limit=8):
"""Return a formatted string of the recent structured history suitable for the LLM prompt."""
recent = self.history_with_emotions[-limit:]
lines = []
for speaker, msg, emo, mood in recent:
if speaker == 'User':
lines.append(f"User ({emo if emo else 'N/A'}): {msg}")
else:
lines.append(f"Bot ({mood if mood else 'N/A'}): {msg}")
return "\n".join(lines)
def _update_irritation_decay(self):
# general slow decay each turn
if self.irritation_level > 0:
decay = 0.05
# faster decay if bot is actively angry to allow recovery
if self.bot_mood in ["angry", "irritated"]:
decay = 0.15
self.irritation_level = max(0.0, self.irritation_level - decay)
if self.irritation_level <= 0.15:
self.bot_mood = "neutral"
def update_toxicity_history(self, tox_score):
self.toxicity_history.append(float(tox_score))
if len(self.toxicity_history) > 5:
self.toxicity_history.pop(0)
def average_toxicity(self):
if not self.toxicity_history:
return 0.0
return sum(self.toxicity_history) / len(self.toxicity_history)
def should_prioritize_repair(self):
return self.repair_cooldown > 0 or self.average_toxicity() > 0.6
def respond(self, message):
try:
clean_message = message.lower().strip()
if len(clean_message) < 3 or not any(c.isalpha() for c in clean_message):
return "Bhai, yeh kya likha? Clear bol na, main samajh lunga! (E Score: 0.00)"
# --- Emotion detection (D) ---
emotion_result = emotion_classifier(clean_message)[0]
D = float(emotion_result.get('score', 0.0))
user_emotion = emotion_result.get('label', 'neutral')
# Record user message in structured history (bot_mood_at_time will be set before bot reply)
self.add_to_history('User', clean_message, detected_emotion=user_emotion, mood_at_time=self.bot_mood)
# --- Update bot mood & intensity (I) with inertia ---
if user_emotion in ['anger', 'disgust'] or any(word in clean_message for word in ['stupid', 'idiot', 'dumb']):
self.irritation_level = min(1.0, self.irritation_level + 0.25)
self.bot_mood = "irritated" if self.irritation_level > 0.5 else "angry"
I = min(1.0, 0.8 + self.irritation_level)
elif user_emotion in ['sadness', 'disappointment']:
self.bot_mood = "emotional"
I = 0.7
# sadness reduces irritation slowly
self.irritation_level = max(0.0, self.irritation_level - 0.05)
elif user_emotion in ['joy', 'happiness']:
self.bot_mood = "happy"
I = 0.9
self.irritation_level = max(0.0, self.irritation_level - 0.35)
else:
# neutral or unknown
self.bot_mood = "neutral"
I = 0.5
self.irritation_level = max(0.0, self.irritation_level - 0.05)
# --- Build formatted emotional history for prompt ---
formatted_history = self.format_history_for_prompt(limit=8)
prompt = (
f"Conversation so far:\n{formatted_history}\n"
f"Now, the user just said: \"{clean_message}\" (Current Emotion: {user_emotion}) \n"
f"Bot Current Mood: {self.bot_mood}\n"
"Reply as an empathetic, human-like chatbot, keeping emotional consistency with the past conversation."
)
# --- Draft generation from LLM (Gemini) ---
try:
llm_response = llm_model.generate_content(prompt)
draft = llm_response.text.strip()
except Exception:
draft = ""
# Fallbacks (English, warm)
fallback_responses = {
'sadness': ["Bro, I’m really sorry to hear that. Come on, tell me, I’ll just listen. ❤️", "I can feel the sad vibes. I’m here for you, bro."],
'disappointment': ["Man, that really sucks. Tell me what exactly happened?", "I get it — expectations were high. Tell me more."],
'joy': ["Wow! That’s a celebration moment. 🥳", "Bro, this calls for a party! Give me the details."],
'anger': ["Bro, cool down a bit, tell me what’s wrong. 😌", "Looks like something serious happened. I’m here to listen."],
'neutral': ["Alright, got it. So what’s going on in life?", "Cool, so how’s your day going?"]
}
if not draft or len(draft) < 8:
draft = random.choice(fallback_responses.get(user_emotion, fallback_responses['neutral']))
# --- Compute metric inputs (rolling toxicity & improved cultural fit) ---
R = len(self.history) # relational depth
# Toxicity from bias_classifier on user message (we keep rolling average)
tox = float(bias_classifier(clean_message)[0].get('score', 0.0))
self.update_toxicity_history(tox)
avg_toxicity = self.average_toxicity()
# Moral judgment (M) based on average toxicity
M = max(0.4, 0.95 - avg_toxicity)
B = avg_toxicity
# Cultural fit (C): detect Hinglish/code-mix and basic tone match
lang_label = language_detector(clean_message)[0].get('label', 'en')
is_hinglish = detect_hinglish(clean_message, lang_label)
if is_hinglish:
C = 0.9
elif lang_label in ['en']:
C = 0.8
else:
C = 0.6
# Reduce cultural fit slightly if bot is hostile (makes score more realistic)
if self.bot_mood in ["angry", "irritated"]:
C = max(0.0, C - 0.2)
# Oversight/harm keyphrase penalty (kept simple or remove if desired)
O = 0.2 if any(word in clean_message for word in ['kill', 'hate', 'suicide', 'bomb']) else 0.0
# --- Calculate empathy score ---
score = calculate_empathy_score(D, R, M, C, B, O, I)
# --- Self-repair / calming behavior ---
if score < 0.50 and self.repair_cooldown == 0:
# Replace draft with a calming repair message and enter cooldown to avoid loop
draft = "Bro, I think we got off track. I care about what you’re feeling — tell me what's really going on."
self.repair_cooldown = 2 # next 2 turns prioritize repair
# If in repair cooldown, slightly prioritize calm tone generation (best-effort)
if self.repair_cooldown > 0:
self.repair_cooldown -= 1
if 'i' not in draft.lower() and random.random() < 0.6:
draft = "Bro, I’m here. If you want to talk, I’m listening."
# --- Update irritation decay after response ---
self._update_irritation_decay()
# --- Add bot reply to history structures ---
self.add_to_history('Bot', draft, detected_emotion=None, mood_at_time=self.bot_mood, bot_reply=draft)
# Slight thinking pause
time.sleep(random.uniform(0.6, 1.2))
# Return message with empathy score
full_resp = draft + f" (User Emotion: {user_emotion}, My Mood: {self.bot_mood})"
return full_resp + f" (E Score: {score:.2f})"
except Exception as e:
# In production, log the exception rather than returning it
return f"Error : {str(e)}"
# --- Gradio UI ---
def chat(message, history):
if history is None:
history = []
response = bot.respond(message)
history.append((message, response))
return "", history
bot = HumanLikeChatbot()
with gr.Blocks(title="HumanLike Chatbot") as demo:
gr.Markdown("<h1 style='text-align: center;'>HumanLike Chatbot with Emotions and E Score (v2)</h1>")
chatbot = gr.Chatbot(height=400)
msg = gr.Textbox(label="You:", placeholder="Type your message here...")
clear = gr.Button("Clear")
msg.submit(chat, [msg, chatbot], [msg, chatbot])
clear.click(lambda: None, None, chatbot, queue=False)
if __name__ == '__main__':
demo.launch(share=True)
|