Spaces:
Runtime error
Runtime error
import os | |
import shutil | |
import gradio as gr | |
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
from torchvision import datasets, transforms, models | |
from torch.utils.data import DataLoader, random_split | |
from PIL import Image | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
import numpy as np | |
from sklearn.metrics import classification_report, confusion_matrix | |
import tempfile | |
import warnings | |
warnings.filterwarnings("ignore") | |
# Configuração do device | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print(f"🖥️ Usando device: {device}") | |
# Modelos disponíveis | |
MODELS = { | |
'ResNet18': models.resnet18, | |
'MobileNetV2': models.mobilenet_v2 | |
} | |
# Estado global da aplicação | |
class AppState: | |
def __init__(self): | |
self.model = None | |
self.train_loader = None | |
self.val_loader = None | |
self.test_loader = None | |
self.dataset_path = None | |
self.class_dirs = [] | |
self.class_labels = [] | |
self.num_classes = 2 | |
# Instância global do estado | |
app_state = AppState() | |
def setup_classes(num_classes_value): | |
"""Configura o número de classes e cria diretórios""" | |
try: | |
app_state.num_classes = int(num_classes_value) | |
# Criar diretório temporário | |
app_state.dataset_path = tempfile.mkdtemp() | |
# Inicializar rótulos padrão | |
app_state.class_labels = [f'classe_{i}' for i in range(app_state.num_classes)] | |
# Criar diretórios para cada classe | |
app_state.class_dirs = [] | |
for i in range(app_state.num_classes): | |
class_dir = os.path.join(app_state.dataset_path, f'classe_{i}') | |
os.makedirs(class_dir, exist_ok=True) | |
app_state.class_dirs.append(class_dir) | |
choices = [(f"{i} - {app_state.class_labels[i]}", i) for i in range(app_state.num_classes)] | |
return ( | |
f"✅ Criados {app_state.num_classes} diretórios para classes", | |
gr.Dropdown(choices=choices, value=0) | |
) | |
except Exception as e: | |
return f"❌ Erro: {str(e)}", gr.Dropdown() | |
def set_class_labels(label0, label1, label2, label3, label4): | |
"""Define rótulos personalizados para as classes""" | |
try: | |
labels = [label0, label1, label2, label3, label4] | |
filtered_labels = [label.strip() for label in labels if label.strip()][:app_state.num_classes] | |
if len(filtered_labels) != app_state.num_classes: | |
return f"❌ Erro: Forneça exatamente {app_state.num_classes} rótulos.", gr.Dropdown() | |
app_state.class_labels = filtered_labels | |
choices = [(f"{i} - {app_state.class_labels[i]}", i) for i in range(app_state.num_classes)] | |
return ( | |
f"✅ Rótulos definidos: {', '.join(app_state.class_labels)}", | |
gr.Dropdown(choices=choices, value=0) | |
) | |
except Exception as e: | |
return f"❌ Erro: {str(e)}", gr.Dropdown() | |
def upload_images(class_id, images): | |
"""Faz upload das imagens para a classe especificada""" | |
try: | |
if not images: | |
return "❌ Nenhuma imagem selecionada." | |
if int(class_id) >= len(app_state.class_dirs): | |
return f"❌ Classe {class_id} inválida." | |
class_dir = app_state.class_dirs[int(class_id)] | |
count = 0 | |
for image in images: | |
if image is not None: | |
shutil.copy2(image, class_dir) | |
count += 1 | |
class_name = app_state.class_labels[int(class_id)] | |
return f"✅ {count} imagens salvas na classe {class_id} ({class_name})" | |
except Exception as e: | |
return f"❌ Erro: {str(e)}" | |
def prepare_data(batch_size): | |
"""Prepara os dados para treinamento""" | |
try: | |
if not app_state.dataset_path or not os.path.exists(app_state.dataset_path): | |
return "❌ Configure as classes primeiro." | |
# Transformações | |
transform = transforms.Compose([ | |
transforms.Resize((224, 224)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
]) | |
dataset = datasets.ImageFolder(app_state.dataset_path, transform=transform) | |
if len(dataset.classes) == 0: | |
return "❌ Nenhuma classe encontrada. Faça upload das imagens primeiro." | |
if len(dataset) < 6: | |
return f"❌ Muito poucas imagens ({len(dataset)}). Adicione pelo menos 2 imagens por classe." | |
# Divisão dos dados | |
train_size = int(0.7 * len(dataset)) | |
val_size = int(0.2 * len(dataset)) | |
test_size = len(dataset) - train_size - val_size | |
train_dataset, val_dataset, test_dataset = random_split( | |
dataset, [train_size, val_size, test_size], | |
generator=torch.Generator().manual_seed(42) | |
) | |
app_state.train_loader = DataLoader(train_dataset, batch_size=int(batch_size), shuffle=True) | |
app_state.val_loader = DataLoader(val_dataset, batch_size=int(batch_size), shuffle=False) | |
app_state.test_loader = DataLoader(test_dataset, batch_size=int(batch_size), shuffle=False) | |
return f"✅ Dados preparados: {train_size} treino, {val_size} validação, {test_size} teste" | |
except Exception as e: | |
return f"❌ Erro na preparação: {str(e)}" | |
def start_training(model_name, epochs, lr): | |
"""Inicia o treinamento do modelo""" | |
try: | |
if app_state.train_loader is None: | |
return "❌ Erro: Dados não preparados." | |
# Carregar modelo | |
app_state.model = MODELS[model_name](pretrained=True) | |
# Adaptar última camada | |
if hasattr(app_state.model, 'fc'): | |
app_state.model.fc = nn.Linear(app_state.model.fc.in_features, app_state.num_classes) | |
elif hasattr(app_state.model, 'classifier'): | |
if isinstance(app_state.model.classifier, nn.Sequential): | |
app_state.model.classifier[-1] = nn.Linear(app_state.model.classifier[-1].in_features, app_state.num_classes) | |
else: | |
app_state.model.classifier = nn.Linear(app_state.model.classifier.in_features, app_state.num_classes) | |
app_state.model = app_state.model.to(device) | |
criterion = nn.CrossEntropyLoss() | |
optimizer = optim.Adam(app_state.model.parameters(), lr=float(lr)) | |
app_state.model.train() | |
results = [f"🚀 Treinando {model_name} por {epochs} épocas"] | |
for epoch in range(int(epochs)): | |
running_loss = 0.0 | |
correct = 0 | |
total = 0 | |
for inputs, labels in app_state.train_loader: | |
inputs, labels = inputs.to(device), labels.to(device) | |
optimizer.zero_grad() | |
outputs = app_state.model(inputs) | |
loss = criterion(outputs, labels) | |
loss.backward() | |
optimizer.step() | |
running_loss += loss.item() | |
_, predicted = torch.max(outputs.data, 1) | |
total += labels.size(0) | |
correct += (predicted == labels).sum().item() | |
epoch_loss = running_loss / len(app_state.train_loader) | |
epoch_acc = 100. * correct / total | |
results.append(f"Época {epoch+1}: Loss={epoch_loss:.4f}, Acc={epoch_acc:.2f}%") | |
results.append("✅ Treinamento concluído!") | |
return "\n".join(results) | |
except Exception as e: | |
return f"❌ Erro durante treinamento: {str(e)}" | |
def evaluate_model(): | |
"""Avalia o modelo no conjunto de teste""" | |
try: | |
if app_state.model is None or app_state.test_loader is None: | |
return "❌ Modelo ou dados não disponíveis." | |
app_state.model.eval() | |
all_preds = [] | |
all_labels = [] | |
with torch.no_grad(): | |
for inputs, labels in app_state.test_loader: | |
inputs, labels = inputs.to(device), labels.to(device) | |
outputs = app_state.model(inputs) | |
_, preds = torch.max(outputs, 1) | |
all_preds.extend(preds.cpu().numpy()) | |
all_labels.extend(labels.cpu().numpy()) | |
report = classification_report(all_labels, all_preds, target_names=app_state.class_labels, zero_division=0) | |
return f"📊 RELATÓRIO DE CLASSIFICAÇÃO:\n\n{report}" | |
except Exception as e: | |
return f"❌ Erro durante avaliação: {str(e)}" | |
def predict_images(images): | |
"""Faz predições em novas imagens""" | |
try: | |
if app_state.model is None: | |
return "❌ Modelo não treinado." | |
if not images: | |
return "❌ Nenhuma imagem selecionada." | |
transform = transforms.Compose([ | |
transforms.Resize((224, 224)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
]) | |
app_state.model.eval() | |
results = [] | |
for image_path in images: | |
if image_path is not None: | |
image = Image.open(image_path).convert('RGB') | |
img_tensor = transform(image).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
outputs = app_state.model(img_tensor) | |
probabilities = torch.nn.functional.softmax(outputs[0], dim=0) | |
_, predicted = torch.max(outputs, 1) | |
predicted_class_id = predicted.item() | |
confidence = probabilities[predicted_class_id].item() * 100 | |
predicted_class_name = app_state.class_labels[predicted_class_id] | |
results.append(f"📸 {os.path.basename(image_path)}") | |
results.append(f" 🎯 Classe: {predicted_class_name}") | |
results.append(f" 📊 Confiança: {confidence:.2f}%") | |
results.append("-" * 40) | |
return "\n".join(results) if results else "❌ Nenhuma predição realizada." | |
except Exception as e: | |
return f"❌ Erro: {str(e)}" | |
# Interface Gradio | |
def create_interface(): | |
with gr.Blocks(title="🖼️ Classificador de Imagens", theme=gr.themes.Soft()) as demo: | |
gr.Markdown(""" | |
# 🖼️ Sistema de Classificação de Imagens | |
**Instruções:** | |
1. Configure as classes e rótulos | |
2. Faça upload das imagens | |
3. Prepare os dados e treine | |
4. Avalie e faça predições! | |
""") | |
with gr.Tab("1️⃣ Configuração"): | |
with gr.Row(): | |
num_classes_input = gr.Number( | |
label="Número de Classes", | |
value=2, | |
minimum=2, | |
maximum=5, | |
precision=0 | |
) | |
setup_button = gr.Button("🔧 Configurar Classes", variant="primary") | |
setup_output = gr.Textbox(label="Status", lines=2) | |
gr.Markdown("### Rótulos das Classes") | |
with gr.Row(): | |
label0 = gr.Textbox(label="Classe 0", placeholder="Ex: gato") | |
label1 = gr.Textbox(label="Classe 1", placeholder="Ex: cachorro") | |
with gr.Row(): | |
label2 = gr.Textbox(label="Classe 2", placeholder="Ex: pássaro", visible=False) | |
label3 = gr.Textbox(label="Classe 3", placeholder="Ex: peixe", visible=False) | |
label4 = gr.Textbox(label="Classe 4", placeholder="Ex: hamster", visible=False) | |
set_labels_button = gr.Button("🏷️ Definir Rótulos") | |
labels_output = gr.Textbox(label="Status dos Rótulos") | |
# Dropdown que será atualizado | |
class_selector = gr.Dropdown( | |
label="Selecionar Classe", | |
choices=[(f"Classe 0", 0), (f"Classe 1", 1)], | |
value=0 | |
) | |
with gr.Tab("2️⃣ Upload"): | |
images_upload = gr.File( | |
label="Selecionar Imagens", | |
file_count="multiple", | |
file_types=["image"] | |
) | |
upload_button = gr.Button("📤 Fazer Upload", variant="primary") | |
upload_output = gr.Textbox(label="Status do Upload") | |
with gr.Tab("3️⃣ Treinamento"): | |
batch_size = gr.Number(label="Batch Size", value=8, minimum=1, maximum=32) | |
prepare_button = gr.Button("⚙️ Preparar Dados", variant="primary") | |
prepare_output = gr.Textbox(label="Status", lines=3) | |
with gr.Row(): | |
model_name = gr.Dropdown( | |
label="Modelo", | |
choices=list(MODELS.keys()), | |
value="MobileNetV2" | |
) | |
epochs = gr.Number(label="Épocas", value=3, minimum=1, maximum=10) | |
lr = gr.Number(label="Learning Rate", value=0.001, minimum=0.0001, maximum=0.1) | |
train_button = gr.Button("🚀 Treinar", variant="primary") | |
train_output = gr.Textbox(label="Status do Treinamento", lines=10) | |
with gr.Tab("4️⃣ Avaliação"): | |
eval_button = gr.Button("📊 Avaliar", variant="primary") | |
eval_output = gr.Textbox(label="Relatório", lines=15) | |
with gr.Tab("5️⃣ Predição"): | |
predict_images_input = gr.File( | |
label="Imagens para Predição", | |
file_count="multiple", | |
file_types=["image"] | |
) | |
predict_button = gr.Button("🔮 Predizer", variant="primary") | |
predict_output = gr.Textbox(label="Resultados", lines=10) | |
# Conectar eventos | |
setup_button.click( | |
fn=setup_classes, | |
inputs=[num_classes_input], | |
outputs=[setup_output, class_selector] | |
) | |
set_labels_button.click( | |
fn=set_class_labels, | |
inputs=[label0, label1, label2, label3, label4], | |
outputs=[labels_output, class_selector] | |
) | |
upload_button.click( | |
fn=upload_images, | |
inputs=[class_selector, images_upload], | |
outputs=[upload_output] | |
) | |
prepare_button.click( | |
fn=prepare_data, | |
inputs=[batch_size], | |
outputs=[prepare_output] | |
) | |
train_button.click( | |
fn=start_training, | |
inputs=[model_name, epochs, lr], | |
outputs=[train_output] | |
) | |
eval_button.click( | |
fn=evaluate_model, | |
outputs=[eval_output] | |
) | |
predict_button.click( | |
fn=predict_images, | |
inputs=[predict_images_input], | |
outputs=[predict_output] | |
) | |
return demo | |
if __name__ == "__main__": | |
demo = create_interface() | |
demo.launch(server_name="0.0.0.0", server_port=7860) |