Spaces:
Runtime error
Runtime error
Commit
·
6943d4d
1
Parent(s):
5a244c5
go3
Browse files
app.py
CHANGED
@@ -1,7 +1,3 @@
|
|
1 |
-
# ============================================================================
|
2 |
-
# SISTEMA DE CLASSIFICAÇÃO DE IMAGENS - HUGGING FACE SPACE
|
3 |
-
# ============================================================================
|
4 |
-
|
5 |
import os
|
6 |
import shutil
|
7 |
import gradio as gr
|
@@ -19,492 +15,392 @@ import tempfile
|
|
19 |
import warnings
|
20 |
warnings.filterwarnings("ignore")
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
print(f"🖥️
|
25 |
-
|
26 |
-
# ============================================================================
|
27 |
-
# CONFIGURAÇÕES E VARIÁVEIS GLOBAIS
|
28 |
-
# ============================================================================
|
29 |
|
30 |
# Modelos disponíveis
|
31 |
-
|
32 |
-
'AlexNet': models.alexnet,
|
33 |
'ResNet18': models.resnet18,
|
34 |
-
'ResNet34': models.resnet34,
|
35 |
-
'ResNet50': models.resnet50,
|
36 |
'MobileNetV2': models.mobilenet_v2
|
37 |
}
|
38 |
|
39 |
-
#
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
num_classes = 2
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
# ============================================================================
|
55 |
-
# FUNÇÕES PRINCIPAIS
|
56 |
-
# ============================================================================
|
57 |
|
58 |
def setup_classes(num_classes_value):
|
59 |
"""Configura o número de classes e cria diretórios"""
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
-
def set_class_labels(
|
80 |
"""Define rótulos personalizados para as classes"""
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
def upload_images(class_id, images):
|
93 |
"""Faz upload das imagens para a classe especificada"""
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
112 |
|
113 |
-
def prepare_data(batch_size
|
114 |
"""Prepara os dados para treinamento"""
|
115 |
-
global train_loader, val_loader, test_loader, num_classes
|
116 |
-
|
117 |
try:
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
# Transformações
|
122 |
transform = transforms.Compose([
|
123 |
-
transforms.Resize(
|
124 |
transforms.ToTensor(),
|
125 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
126 |
])
|
127 |
-
|
128 |
-
dataset = datasets.ImageFolder(dataset_path, transform=transform)
|
129 |
-
|
130 |
if len(dataset.classes) == 0:
|
131 |
return "❌ Nenhuma classe encontrada. Faça upload das imagens primeiro."
|
132 |
-
|
133 |
-
if len(dataset
|
134 |
-
return f"❌
|
135 |
-
|
136 |
-
#
|
137 |
-
if len(dataset) < 10:
|
138 |
-
return f"❌ Muito poucas imagens ({len(dataset)}). Adicione pelo menos 10 imagens por classe."
|
139 |
-
|
140 |
-
# Divisão dos dados: 70% treino, 20% validação, 10% teste
|
141 |
train_size = int(0.7 * len(dataset))
|
142 |
val_size = int(0.2 * len(dataset))
|
143 |
test_size = len(dataset) - train_size - val_size
|
144 |
-
|
145 |
train_dataset, val_dataset, test_dataset = random_split(
|
146 |
dataset, [train_size, val_size, test_size],
|
147 |
generator=torch.Generator().manual_seed(42)
|
148 |
)
|
149 |
-
|
150 |
-
train_loader = DataLoader(train_dataset, batch_size=int(batch_size), shuffle=True)
|
151 |
-
val_loader = DataLoader(val_dataset, batch_size=int(batch_size), shuffle=False)
|
152 |
-
test_loader = DataLoader(test_dataset, batch_size=int(batch_size), shuffle=False)
|
153 |
-
|
154 |
return f"✅ Dados preparados: {train_size} treino, {val_size} validação, {test_size} teste"
|
155 |
-
|
156 |
except Exception as e:
|
157 |
return f"❌ Erro na preparação: {str(e)}"
|
158 |
|
159 |
-
def start_training(model_name, epochs, lr
|
160 |
"""Inicia o treinamento do modelo"""
|
161 |
-
global model, train_loader, val_loader, device
|
162 |
-
|
163 |
-
if train_loader is None or val_loader is None:
|
164 |
-
return "❌ Erro: Dados não preparados. Execute a preparação dos dados primeiro."
|
165 |
-
|
166 |
try:
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
#
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
model
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
criterion = nn.CrossEntropyLoss()
|
179 |
-
optimizer = optim.Adam(model.parameters(), lr=float(lr))
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
results
|
184 |
-
|
185 |
-
results.append("-" * 50)
|
186 |
-
|
187 |
-
model.train()
|
188 |
-
|
189 |
for epoch in range(int(epochs)):
|
190 |
running_loss = 0.0
|
191 |
correct = 0
|
192 |
total = 0
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
for batch_idx, (inputs, labels) in enumerate(train_loader):
|
197 |
inputs, labels = inputs.to(device), labels.to(device)
|
198 |
-
|
199 |
optimizer.zero_grad()
|
200 |
-
outputs = model(inputs)
|
201 |
loss = criterion(outputs, labels)
|
202 |
loss.backward()
|
203 |
optimizer.step()
|
204 |
-
|
205 |
running_loss += loss.item()
|
206 |
_, predicted = torch.max(outputs.data, 1)
|
207 |
total += labels.size(0)
|
208 |
correct += (predicted == labels).sum().item()
|
209 |
-
|
210 |
-
|
211 |
-
epoch_loss = running_loss / len(train_loader)
|
212 |
epoch_acc = 100. * correct / total
|
213 |
-
results.append(f"
|
214 |
-
|
215 |
-
|
216 |
-
model_path = tempfile.NamedTemporaryFile(suffix='.pth', delete=False).name
|
217 |
-
torch.save(model.state_dict(), model_path)
|
218 |
-
results.append("-" * 50)
|
219 |
-
results.append(f"✅ Treinamento concluído! Modelo salvo temporariamente.")
|
220 |
-
|
221 |
return "\n".join(results)
|
222 |
-
|
223 |
except Exception as e:
|
224 |
return f"❌ Erro durante treinamento: {str(e)}"
|
225 |
|
226 |
def evaluate_model():
|
227 |
"""Avalia o modelo no conjunto de teste"""
|
228 |
-
global model, device, num_classes, class_labels, test_loader
|
229 |
-
|
230 |
-
if model is None:
|
231 |
-
return "❌ Erro: Modelo não treinado."
|
232 |
-
|
233 |
-
if test_loader is None:
|
234 |
-
return "❌ Erro: Conjunto de dados não preparado."
|
235 |
-
|
236 |
-
model.eval()
|
237 |
-
all_preds = []
|
238 |
-
all_labels = []
|
239 |
-
|
240 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
with torch.no_grad():
|
242 |
-
for inputs, labels in test_loader:
|
243 |
inputs, labels = inputs.to(device), labels.to(device)
|
244 |
-
outputs = model(inputs)
|
245 |
_, preds = torch.max(outputs, 1)
|
246 |
all_preds.extend(preds.cpu().numpy())
|
247 |
all_labels.extend(labels.cpu().numpy())
|
248 |
-
|
249 |
-
|
250 |
-
target_names = class_labels if len(class_labels) == num_classes else [f"class_{i}" for i in range(num_classes)]
|
251 |
-
report = classification_report(all_preds, all_labels, target_names=target_names, zero_division=0)
|
252 |
-
|
253 |
return f"📊 RELATÓRIO DE CLASSIFICAÇÃO:\n\n{report}"
|
254 |
-
|
255 |
except Exception as e:
|
256 |
return f"❌ Erro durante avaliação: {str(e)}"
|
257 |
|
258 |
-
def show_confusion_matrix():
|
259 |
-
"""Gera matriz de confusão"""
|
260 |
-
global model, device, num_classes, class_labels, test_loader
|
261 |
-
|
262 |
-
if model is None:
|
263 |
-
return None
|
264 |
-
|
265 |
-
if test_loader is None:
|
266 |
-
return None
|
267 |
-
|
268 |
-
model.eval()
|
269 |
-
all_preds = []
|
270 |
-
all_labels = []
|
271 |
-
|
272 |
-
with torch.no_grad():
|
273 |
-
for inputs, labels in test_loader:
|
274 |
-
inputs, labels = inputs.to(device), labels.to(device)
|
275 |
-
outputs = model(inputs)
|
276 |
-
_, preds = torch.max(outputs, 1)
|
277 |
-
all_preds.extend(preds.cpu().numpy())
|
278 |
-
all_labels.extend(labels.cpu().numpy())
|
279 |
-
|
280 |
-
cm = confusion_matrix(all_labels, all_preds)
|
281 |
-
labels_for_cm = class_labels if len(class_labels) == num_classes else [f"class_{i}" for i in range(num_classes)]
|
282 |
-
|
283 |
-
plt.figure(figsize=(8, 6))
|
284 |
-
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues",
|
285 |
-
xticklabels=labels_for_cm,
|
286 |
-
yticklabels=labels_for_cm)
|
287 |
-
plt.xlabel('Predições')
|
288 |
-
plt.ylabel('Valores Reais')
|
289 |
-
plt.title('Matriz de Confusão')
|
290 |
-
plt.tight_layout()
|
291 |
-
|
292 |
-
# Salvar em arquivo temporário
|
293 |
-
temp_path = tempfile.NamedTemporaryFile(suffix='.png', delete=False).name
|
294 |
-
plt.savefig(temp_path, dpi=150, bbox_inches='tight')
|
295 |
-
plt.close()
|
296 |
-
|
297 |
-
return temp_path
|
298 |
-
|
299 |
def predict_images(images):
|
300 |
"""Faz predições em novas imagens"""
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
except Exception as e:
|
342 |
-
results.append(f"❌ Erro ao processar {os.path.basename(image_path)}: {str(e)}")
|
343 |
-
|
344 |
-
return "\n".join(results)
|
345 |
-
|
346 |
-
# ============================================================================
|
347 |
-
# INTERFACE GRADIO
|
348 |
-
# ============================================================================
|
349 |
|
|
|
350 |
def create_interface():
|
351 |
-
"""Cria a interface Gradio"""
|
352 |
-
|
353 |
with gr.Blocks(title="🖼️ Classificador de Imagens", theme=gr.themes.Soft()) as demo:
|
354 |
-
|
355 |
gr.Markdown("""
|
356 |
-
# 🖼️ Sistema de Classificação de Imagens
|
357 |
-
#### Por [Ramon Mayor Martins](https://rmayormartins.github.io/)
|
358 |
-
|
359 |
-
**Instruções:**
|
360 |
-
1. Configure o número de classes e defina os rótulos
|
361 |
-
2. Faça upload das imagens para cada classe
|
362 |
-
3. Prepare os dados e treine o modelo
|
363 |
-
4. Avalie o desempenho e faça predições!
|
364 |
|
365 |
-
|
|
|
|
|
|
|
|
|
366 |
""")
|
367 |
-
|
368 |
with gr.Tab("1️⃣ Configuração"):
|
369 |
-
gr.Markdown("### 🎯 Configurar Classes")
|
370 |
-
|
371 |
-
num_classes_input = gr.Number(
|
372 |
-
label="Número de Classes",
|
373 |
-
value=2,
|
374 |
-
precision=0,
|
375 |
-
minimum=2,
|
376 |
-
maximum=10
|
377 |
-
)
|
378 |
-
setup_button = gr.Button("🔧 Configurar Classes", variant="primary")
|
379 |
-
setup_output = gr.Textbox(label="📋 Status", lines=2)
|
380 |
-
|
381 |
-
gr.Markdown("### 🏷️ Definir Rótulos")
|
382 |
-
|
383 |
-
# Campos para rótulos dinâmicos
|
384 |
-
label_inputs = []
|
385 |
-
for i in range(10):
|
386 |
-
label_input = gr.Textbox(
|
387 |
-
label=f"Rótulo da Classe {i}",
|
388 |
-
placeholder=f"Ex: gato, cachorro, pássaro...",
|
389 |
-
visible=(i < 2)
|
390 |
-
)
|
391 |
-
label_inputs.append(label_input)
|
392 |
-
|
393 |
-
set_labels_button = gr.Button("🏷️ Definir Rótulos", variant="secondary")
|
394 |
-
labels_output = gr.Textbox(label="📋 Status dos Rótulos")
|
395 |
-
|
396 |
-
# Atualizar visibilidade dos campos
|
397 |
-
def update_label_visibility(num_classes_value):
|
398 |
-
updates = []
|
399 |
-
for i in range(10):
|
400 |
-
updates.append(gr.update(visible=(i < int(num_classes_value))))
|
401 |
-
return updates
|
402 |
-
|
403 |
-
# Conectar eventos
|
404 |
-
setup_button.click(setup_classes, inputs=num_classes_input, outputs=setup_output)
|
405 |
-
num_classes_input.change(update_label_visibility, inputs=num_classes_input, outputs=label_inputs)
|
406 |
-
set_labels_button.click(set_class_labels, inputs=label_inputs, outputs=labels_output)
|
407 |
-
|
408 |
-
with gr.Tab("2️⃣ Upload de Imagens"):
|
409 |
-
gr.Markdown("### 📤 Upload de Imagens por Classe")
|
410 |
-
|
411 |
with gr.Row():
|
412 |
-
|
413 |
-
label="
|
414 |
-
|
415 |
-
|
|
|
|
|
416 |
)
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
upload_button = gr.Button("📤 Fazer Upload", variant="primary")
|
425 |
-
upload_output = gr.Textbox(label="📋 Status do Upload")
|
426 |
-
|
427 |
-
# Atualizar dropdown de classes
|
428 |
-
def update_class_dropdown(num_classes_value):
|
429 |
-
choices = []
|
430 |
-
for i in range(int(num_classes_value)):
|
431 |
-
label = class_labels[i] if i < len(class_labels) else f"Classe {i}"
|
432 |
-
choices.append((f"{i} - {label}", i))
|
433 |
-
return gr.update(choices=choices, value=0)
|
434 |
-
|
435 |
-
# Conectar eventos
|
436 |
-
upload_button.click(upload_images, inputs=[class_selector, images_upload], outputs=upload_output)
|
437 |
-
num_classes_input.change(update_class_dropdown, inputs=num_classes_input, outputs=class_selector)
|
438 |
-
set_labels_button.click(update_class_dropdown, inputs=num_classes_input, outputs=class_selector)
|
439 |
-
|
440 |
-
with gr.Tab("3️⃣ Preparação & Treinamento"):
|
441 |
-
gr.Markdown("### ⚙️ Configurar Parâmetros")
|
442 |
-
|
443 |
with gr.Row():
|
444 |
-
|
445 |
-
|
446 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
447 |
prepare_button = gr.Button("⚙️ Preparar Dados", variant="primary")
|
448 |
-
prepare_output = gr.Textbox(label="
|
449 |
-
|
450 |
-
gr.Markdown("### 🚀 Treinamento")
|
451 |
-
|
452 |
with gr.Row():
|
453 |
model_name = gr.Dropdown(
|
454 |
-
label="Modelo",
|
455 |
-
choices=list(
|
456 |
value="MobileNetV2"
|
457 |
)
|
458 |
-
epochs = gr.Number(label="Épocas", value=3, minimum=1, maximum=
|
459 |
lr = gr.Number(label="Learning Rate", value=0.001, minimum=0.0001, maximum=0.1)
|
460 |
-
|
461 |
-
train_button = gr.Button("🚀
|
462 |
-
train_output = gr.Textbox(label="
|
463 |
-
|
464 |
-
# Conectar eventos
|
465 |
-
prepare_button.click(prepare_data, inputs=[batch_size, resize_input], outputs=prepare_output)
|
466 |
-
train_button.click(start_training, inputs=[model_name, epochs, lr], outputs=train_output)
|
467 |
-
|
468 |
with gr.Tab("4️⃣ Avaliação"):
|
469 |
-
gr.
|
470 |
-
|
471 |
-
|
472 |
-
eval_button = gr.Button("📊 Avaliar Modelo", variant="primary")
|
473 |
-
cm_button = gr.Button("📈 Matriz de Confusão", variant="secondary")
|
474 |
-
|
475 |
-
eval_output = gr.Textbox(label="📋 Relatório de Avaliação", lines=15)
|
476 |
-
cm_output = gr.Image(label="📈 Matriz de Confusão")
|
477 |
-
|
478 |
-
# Conectar eventos
|
479 |
-
eval_button.click(evaluate_model, outputs=eval_output)
|
480 |
-
cm_button.click(show_confusion_matrix, outputs=cm_output)
|
481 |
-
|
482 |
with gr.Tab("5️⃣ Predição"):
|
483 |
-
gr.Markdown("### 🔮 Fazer Predições em Novas Imagens")
|
484 |
-
|
485 |
predict_images_input = gr.File(
|
486 |
-
label="
|
487 |
-
file_count="multiple",
|
488 |
-
type="filepath",
|
489 |
file_types=["image"]
|
490 |
)
|
491 |
-
predict_button = gr.Button("🔮 Predizer", variant="primary"
|
492 |
-
predict_output = gr.Textbox(label="
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
497 |
return demo
|
498 |
|
499 |
-
# ============================================================================
|
500 |
-
# EXECUÇÃO PRINCIPAL
|
501 |
-
# ============================================================================
|
502 |
-
|
503 |
if __name__ == "__main__":
|
504 |
-
print("🎯 Criando interface...")
|
505 |
demo = create_interface()
|
506 |
-
|
507 |
-
print("🚀 Iniciando aplicação...")
|
508 |
-
demo.launch()
|
509 |
-
|
510 |
-
print("✅ Sistema pronto para uso!")
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import shutil
|
3 |
import gradio as gr
|
|
|
15 |
import warnings
|
16 |
warnings.filterwarnings("ignore")
|
17 |
|
18 |
+
# Configuração do device
|
19 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
+
print(f"🖥️ Usando device: {device}")
|
|
|
|
|
|
|
|
|
21 |
|
22 |
# Modelos disponíveis
|
23 |
+
MODELS = {
|
|
|
24 |
'ResNet18': models.resnet18,
|
|
|
|
|
25 |
'MobileNetV2': models.mobilenet_v2
|
26 |
}
|
27 |
|
28 |
+
# Estado global da aplicação
|
29 |
+
class AppState:
|
30 |
+
def __init__(self):
|
31 |
+
self.model = None
|
32 |
+
self.train_loader = None
|
33 |
+
self.val_loader = None
|
34 |
+
self.test_loader = None
|
35 |
+
self.dataset_path = None
|
36 |
+
self.class_dirs = []
|
37 |
+
self.class_labels = []
|
38 |
+
self.num_classes = 2
|
39 |
+
|
40 |
+
# Instância global do estado
|
41 |
+
app_state = AppState()
|
|
|
|
|
|
|
|
|
42 |
|
43 |
def setup_classes(num_classes_value):
|
44 |
"""Configura o número de classes e cria diretórios"""
|
45 |
+
try:
|
46 |
+
app_state.num_classes = int(num_classes_value)
|
47 |
+
|
48 |
+
# Criar diretório temporário
|
49 |
+
app_state.dataset_path = tempfile.mkdtemp()
|
50 |
+
|
51 |
+
# Inicializar rótulos padrão
|
52 |
+
app_state.class_labels = [f'classe_{i}' for i in range(app_state.num_classes)]
|
53 |
+
|
54 |
+
# Criar diretórios para cada classe
|
55 |
+
app_state.class_dirs = []
|
56 |
+
for i in range(app_state.num_classes):
|
57 |
+
class_dir = os.path.join(app_state.dataset_path, f'classe_{i}')
|
58 |
+
os.makedirs(class_dir, exist_ok=True)
|
59 |
+
app_state.class_dirs.append(class_dir)
|
60 |
+
|
61 |
+
choices = [(f"{i} - {app_state.class_labels[i]}", i) for i in range(app_state.num_classes)]
|
62 |
+
|
63 |
+
return (
|
64 |
+
f"✅ Criados {app_state.num_classes} diretórios para classes",
|
65 |
+
gr.Dropdown(choices=choices, value=0)
|
66 |
+
)
|
67 |
+
except Exception as e:
|
68 |
+
return f"❌ Erro: {str(e)}", gr.Dropdown()
|
69 |
|
70 |
+
def set_class_labels(label0, label1, label2, label3, label4):
|
71 |
"""Define rótulos personalizados para as classes"""
|
72 |
+
try:
|
73 |
+
labels = [label0, label1, label2, label3, label4]
|
74 |
+
filtered_labels = [label.strip() for label in labels if label.strip()][:app_state.num_classes]
|
75 |
+
|
76 |
+
if len(filtered_labels) != app_state.num_classes:
|
77 |
+
return f"❌ Erro: Forneça exatamente {app_state.num_classes} rótulos.", gr.Dropdown()
|
78 |
+
|
79 |
+
app_state.class_labels = filtered_labels
|
80 |
+
choices = [(f"{i} - {app_state.class_labels[i]}", i) for i in range(app_state.num_classes)]
|
81 |
+
|
82 |
+
return (
|
83 |
+
f"✅ Rótulos definidos: {', '.join(app_state.class_labels)}",
|
84 |
+
gr.Dropdown(choices=choices, value=0)
|
85 |
+
)
|
86 |
+
except Exception as e:
|
87 |
+
return f"❌ Erro: {str(e)}", gr.Dropdown()
|
88 |
|
89 |
def upload_images(class_id, images):
|
90 |
"""Faz upload das imagens para a classe especificada"""
|
91 |
+
try:
|
92 |
+
if not images:
|
93 |
+
return "❌ Nenhuma imagem selecionada."
|
94 |
+
|
95 |
+
if int(class_id) >= len(app_state.class_dirs):
|
96 |
+
return f"❌ Classe {class_id} inválida."
|
97 |
+
|
98 |
+
class_dir = app_state.class_dirs[int(class_id)]
|
99 |
+
count = 0
|
100 |
+
|
101 |
+
for image in images:
|
102 |
+
if image is not None:
|
103 |
+
shutil.copy2(image, class_dir)
|
104 |
+
count += 1
|
105 |
+
|
106 |
+
class_name = app_state.class_labels[int(class_id)]
|
107 |
+
return f"✅ {count} imagens salvas na classe {class_id} ({class_name})"
|
108 |
+
except Exception as e:
|
109 |
+
return f"❌ Erro: {str(e)}"
|
110 |
|
111 |
+
def prepare_data(batch_size):
|
112 |
"""Prepara os dados para treinamento"""
|
|
|
|
|
113 |
try:
|
114 |
+
if not app_state.dataset_path or not os.path.exists(app_state.dataset_path):
|
115 |
+
return "❌ Configure as classes primeiro."
|
116 |
+
|
117 |
# Transformações
|
118 |
transform = transforms.Compose([
|
119 |
+
transforms.Resize((224, 224)),
|
120 |
transforms.ToTensor(),
|
121 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
122 |
])
|
123 |
+
|
124 |
+
dataset = datasets.ImageFolder(app_state.dataset_path, transform=transform)
|
125 |
+
|
126 |
if len(dataset.classes) == 0:
|
127 |
return "❌ Nenhuma classe encontrada. Faça upload das imagens primeiro."
|
128 |
+
|
129 |
+
if len(dataset) < 6:
|
130 |
+
return f"❌ Muito poucas imagens ({len(dataset)}). Adicione pelo menos 2 imagens por classe."
|
131 |
+
|
132 |
+
# Divisão dos dados
|
|
|
|
|
|
|
|
|
133 |
train_size = int(0.7 * len(dataset))
|
134 |
val_size = int(0.2 * len(dataset))
|
135 |
test_size = len(dataset) - train_size - val_size
|
136 |
+
|
137 |
train_dataset, val_dataset, test_dataset = random_split(
|
138 |
dataset, [train_size, val_size, test_size],
|
139 |
generator=torch.Generator().manual_seed(42)
|
140 |
)
|
141 |
+
|
142 |
+
app_state.train_loader = DataLoader(train_dataset, batch_size=int(batch_size), shuffle=True)
|
143 |
+
app_state.val_loader = DataLoader(val_dataset, batch_size=int(batch_size), shuffle=False)
|
144 |
+
app_state.test_loader = DataLoader(test_dataset, batch_size=int(batch_size), shuffle=False)
|
145 |
+
|
146 |
return f"✅ Dados preparados: {train_size} treino, {val_size} validação, {test_size} teste"
|
147 |
+
|
148 |
except Exception as e:
|
149 |
return f"❌ Erro na preparação: {str(e)}"
|
150 |
|
151 |
+
def start_training(model_name, epochs, lr):
|
152 |
"""Inicia o treinamento do modelo"""
|
|
|
|
|
|
|
|
|
|
|
153 |
try:
|
154 |
+
if app_state.train_loader is None:
|
155 |
+
return "❌ Erro: Dados não preparados."
|
156 |
+
|
157 |
+
# Carregar modelo
|
158 |
+
app_state.model = MODELS[model_name](pretrained=True)
|
159 |
+
|
160 |
+
# Adaptar última camada
|
161 |
+
if hasattr(app_state.model, 'fc'):
|
162 |
+
app_state.model.fc = nn.Linear(app_state.model.fc.in_features, app_state.num_classes)
|
163 |
+
elif hasattr(app_state.model, 'classifier'):
|
164 |
+
if isinstance(app_state.model.classifier, nn.Sequential):
|
165 |
+
app_state.model.classifier[-1] = nn.Linear(app_state.model.classifier[-1].in_features, app_state.num_classes)
|
166 |
+
else:
|
167 |
+
app_state.model.classifier = nn.Linear(app_state.model.classifier.in_features, app_state.num_classes)
|
168 |
+
|
169 |
+
app_state.model = app_state.model.to(device)
|
170 |
+
|
171 |
criterion = nn.CrossEntropyLoss()
|
172 |
+
optimizer = optim.Adam(app_state.model.parameters(), lr=float(lr))
|
173 |
+
|
174 |
+
app_state.model.train()
|
175 |
+
|
176 |
+
results = [f"🚀 Treinando {model_name} por {epochs} épocas"]
|
177 |
+
|
|
|
|
|
|
|
|
|
178 |
for epoch in range(int(epochs)):
|
179 |
running_loss = 0.0
|
180 |
correct = 0
|
181 |
total = 0
|
182 |
+
|
183 |
+
for inputs, labels in app_state.train_loader:
|
|
|
|
|
184 |
inputs, labels = inputs.to(device), labels.to(device)
|
185 |
+
|
186 |
optimizer.zero_grad()
|
187 |
+
outputs = app_state.model(inputs)
|
188 |
loss = criterion(outputs, labels)
|
189 |
loss.backward()
|
190 |
optimizer.step()
|
191 |
+
|
192 |
running_loss += loss.item()
|
193 |
_, predicted = torch.max(outputs.data, 1)
|
194 |
total += labels.size(0)
|
195 |
correct += (predicted == labels).sum().item()
|
196 |
+
|
197 |
+
epoch_loss = running_loss / len(app_state.train_loader)
|
|
|
198 |
epoch_acc = 100. * correct / total
|
199 |
+
results.append(f"Época {epoch+1}: Loss={epoch_loss:.4f}, Acc={epoch_acc:.2f}%")
|
200 |
+
|
201 |
+
results.append("✅ Treinamento concluído!")
|
|
|
|
|
|
|
|
|
|
|
202 |
return "\n".join(results)
|
203 |
+
|
204 |
except Exception as e:
|
205 |
return f"❌ Erro durante treinamento: {str(e)}"
|
206 |
|
207 |
def evaluate_model():
|
208 |
"""Avalia o modelo no conjunto de teste"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
try:
|
210 |
+
if app_state.model is None or app_state.test_loader is None:
|
211 |
+
return "❌ Modelo ou dados não disponíveis."
|
212 |
+
|
213 |
+
app_state.model.eval()
|
214 |
+
all_preds = []
|
215 |
+
all_labels = []
|
216 |
+
|
217 |
with torch.no_grad():
|
218 |
+
for inputs, labels in app_state.test_loader:
|
219 |
inputs, labels = inputs.to(device), labels.to(device)
|
220 |
+
outputs = app_state.model(inputs)
|
221 |
_, preds = torch.max(outputs, 1)
|
222 |
all_preds.extend(preds.cpu().numpy())
|
223 |
all_labels.extend(labels.cpu().numpy())
|
224 |
+
|
225 |
+
report = classification_report(all_labels, all_preds, target_names=app_state.class_labels, zero_division=0)
|
|
|
|
|
|
|
226 |
return f"📊 RELATÓRIO DE CLASSIFICAÇÃO:\n\n{report}"
|
227 |
+
|
228 |
except Exception as e:
|
229 |
return f"❌ Erro durante avaliação: {str(e)}"
|
230 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
def predict_images(images):
|
232 |
"""Faz predições em novas imagens"""
|
233 |
+
try:
|
234 |
+
if app_state.model is None:
|
235 |
+
return "❌ Modelo não treinado."
|
236 |
+
|
237 |
+
if not images:
|
238 |
+
return "❌ Nenhuma imagem selecionada."
|
239 |
+
|
240 |
+
transform = transforms.Compose([
|
241 |
+
transforms.Resize((224, 224)),
|
242 |
+
transforms.ToTensor(),
|
243 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
244 |
+
])
|
245 |
+
|
246 |
+
app_state.model.eval()
|
247 |
+
results = []
|
248 |
+
|
249 |
+
for image_path in images:
|
250 |
+
if image_path is not None:
|
251 |
+
image = Image.open(image_path).convert('RGB')
|
252 |
+
img_tensor = transform(image).unsqueeze(0).to(device)
|
253 |
+
|
254 |
+
with torch.no_grad():
|
255 |
+
outputs = app_state.model(img_tensor)
|
256 |
+
probabilities = torch.nn.functional.softmax(outputs[0], dim=0)
|
257 |
+
_, predicted = torch.max(outputs, 1)
|
258 |
+
|
259 |
+
predicted_class_id = predicted.item()
|
260 |
+
confidence = probabilities[predicted_class_id].item() * 100
|
261 |
+
predicted_class_name = app_state.class_labels[predicted_class_id]
|
262 |
+
|
263 |
+
results.append(f"📸 {os.path.basename(image_path)}")
|
264 |
+
results.append(f" 🎯 Classe: {predicted_class_name}")
|
265 |
+
results.append(f" 📊 Confiança: {confidence:.2f}%")
|
266 |
+
results.append("-" * 40)
|
267 |
+
|
268 |
+
return "\n".join(results) if results else "❌ Nenhuma predição realizada."
|
269 |
+
|
270 |
+
except Exception as e:
|
271 |
+
return f"❌ Erro: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
|
273 |
+
# Interface Gradio
|
274 |
def create_interface():
|
|
|
|
|
275 |
with gr.Blocks(title="🖼️ Classificador de Imagens", theme=gr.themes.Soft()) as demo:
|
276 |
+
|
277 |
gr.Markdown("""
|
278 |
+
# 🖼️ Sistema de Classificação de Imagens
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
|
280 |
+
**Instruções:**
|
281 |
+
1. Configure as classes e rótulos
|
282 |
+
2. Faça upload das imagens
|
283 |
+
3. Prepare os dados e treine
|
284 |
+
4. Avalie e faça predições!
|
285 |
""")
|
286 |
+
|
287 |
with gr.Tab("1️⃣ Configuração"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
with gr.Row():
|
289 |
+
num_classes_input = gr.Number(
|
290 |
+
label="Número de Classes",
|
291 |
+
value=2,
|
292 |
+
minimum=2,
|
293 |
+
maximum=5,
|
294 |
+
precision=0
|
295 |
)
|
296 |
+
setup_button = gr.Button("🔧 Configurar Classes", variant="primary")
|
297 |
+
|
298 |
+
setup_output = gr.Textbox(label="Status", lines=2)
|
299 |
+
|
300 |
+
gr.Markdown("### Rótulos das Classes")
|
301 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
with gr.Row():
|
303 |
+
label0 = gr.Textbox(label="Classe 0", placeholder="Ex: gato")
|
304 |
+
label1 = gr.Textbox(label="Classe 1", placeholder="Ex: cachorro")
|
305 |
+
|
306 |
+
with gr.Row():
|
307 |
+
label2 = gr.Textbox(label="Classe 2", placeholder="Ex: pássaro", visible=False)
|
308 |
+
label3 = gr.Textbox(label="Classe 3", placeholder="Ex: peixe", visible=False)
|
309 |
+
label4 = gr.Textbox(label="Classe 4", placeholder="Ex: hamster", visible=False)
|
310 |
+
|
311 |
+
set_labels_button = gr.Button("🏷️ Definir Rótulos")
|
312 |
+
labels_output = gr.Textbox(label="Status dos Rótulos")
|
313 |
+
|
314 |
+
# Dropdown que será atualizado
|
315 |
+
class_selector = gr.Dropdown(
|
316 |
+
label="Selecionar Classe",
|
317 |
+
choices=[(f"Classe 0", 0), (f"Classe 1", 1)],
|
318 |
+
value=0
|
319 |
+
)
|
320 |
+
|
321 |
+
with gr.Tab("2️⃣ Upload"):
|
322 |
+
images_upload = gr.File(
|
323 |
+
label="Selecionar Imagens",
|
324 |
+
file_count="multiple",
|
325 |
+
file_types=["image"]
|
326 |
+
)
|
327 |
+
upload_button = gr.Button("📤 Fazer Upload", variant="primary")
|
328 |
+
upload_output = gr.Textbox(label="Status do Upload")
|
329 |
+
|
330 |
+
with gr.Tab("3️⃣ Treinamento"):
|
331 |
+
batch_size = gr.Number(label="Batch Size", value=8, minimum=1, maximum=32)
|
332 |
prepare_button = gr.Button("⚙️ Preparar Dados", variant="primary")
|
333 |
+
prepare_output = gr.Textbox(label="Status", lines=3)
|
334 |
+
|
|
|
|
|
335 |
with gr.Row():
|
336 |
model_name = gr.Dropdown(
|
337 |
+
label="Modelo",
|
338 |
+
choices=list(MODELS.keys()),
|
339 |
value="MobileNetV2"
|
340 |
)
|
341 |
+
epochs = gr.Number(label="Épocas", value=3, minimum=1, maximum=10)
|
342 |
lr = gr.Number(label="Learning Rate", value=0.001, minimum=0.0001, maximum=0.1)
|
343 |
+
|
344 |
+
train_button = gr.Button("🚀 Treinar", variant="primary")
|
345 |
+
train_output = gr.Textbox(label="Status do Treinamento", lines=10)
|
346 |
+
|
|
|
|
|
|
|
|
|
347 |
with gr.Tab("4️⃣ Avaliação"):
|
348 |
+
eval_button = gr.Button("📊 Avaliar", variant="primary")
|
349 |
+
eval_output = gr.Textbox(label="Relatório", lines=15)
|
350 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
351 |
with gr.Tab("5️⃣ Predição"):
|
|
|
|
|
352 |
predict_images_input = gr.File(
|
353 |
+
label="Imagens para Predição",
|
354 |
+
file_count="multiple",
|
|
|
355 |
file_types=["image"]
|
356 |
)
|
357 |
+
predict_button = gr.Button("🔮 Predizer", variant="primary")
|
358 |
+
predict_output = gr.Textbox(label="Resultados", lines=10)
|
359 |
+
|
360 |
+
# Conectar eventos
|
361 |
+
setup_button.click(
|
362 |
+
fn=setup_classes,
|
363 |
+
inputs=[num_classes_input],
|
364 |
+
outputs=[setup_output, class_selector]
|
365 |
+
)
|
366 |
+
|
367 |
+
set_labels_button.click(
|
368 |
+
fn=set_class_labels,
|
369 |
+
inputs=[label0, label1, label2, label3, label4],
|
370 |
+
outputs=[labels_output, class_selector]
|
371 |
+
)
|
372 |
+
|
373 |
+
upload_button.click(
|
374 |
+
fn=upload_images,
|
375 |
+
inputs=[class_selector, images_upload],
|
376 |
+
outputs=[upload_output]
|
377 |
+
)
|
378 |
+
|
379 |
+
prepare_button.click(
|
380 |
+
fn=prepare_data,
|
381 |
+
inputs=[batch_size],
|
382 |
+
outputs=[prepare_output]
|
383 |
+
)
|
384 |
+
|
385 |
+
train_button.click(
|
386 |
+
fn=start_training,
|
387 |
+
inputs=[model_name, epochs, lr],
|
388 |
+
outputs=[train_output]
|
389 |
+
)
|
390 |
+
|
391 |
+
eval_button.click(
|
392 |
+
fn=evaluate_model,
|
393 |
+
outputs=[eval_output]
|
394 |
+
)
|
395 |
+
|
396 |
+
predict_button.click(
|
397 |
+
fn=predict_images,
|
398 |
+
inputs=[predict_images_input],
|
399 |
+
outputs=[predict_output]
|
400 |
+
)
|
401 |
+
|
402 |
return demo
|
403 |
|
|
|
|
|
|
|
|
|
404 |
if __name__ == "__main__":
|
|
|
405 |
demo = create_interface()
|
406 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
|
|
|