rmayormartins's picture
go7
a2ab6d7
raw
history blame
14 kB
import os
import shutil
import gradio as gr
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms, models
from torch.utils.data import DataLoader, random_split
from PIL import Image
import matplotlib
matplotlib.use('Agg') # Use non-interactive backend
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from sklearn.metrics import classification_report, confusion_matrix
import tempfile
import warnings
warnings.filterwarnings("ignore")
# Configuração
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"🖥️ Device: {device}")
# Modelos disponíveis
MODELS = {
'ResNet18': models.resnet18,
'MobileNetV2': models.mobilenet_v2
}
# Estado global
class AppState:
def __init__(self):
self.model = None
self.train_loader = None
self.val_loader = None
self.test_loader = None
self.dataset_path = None
self.class_dirs = []
self.class_labels = []
self.num_classes = 2
state = AppState()
def setup_classes(num_classes_value):
"""Configura classes"""
try:
state.num_classes = int(num_classes_value)
state.dataset_path = tempfile.mkdtemp()
state.class_labels = [f'classe_{i}' for i in range(state.num_classes)]
state.class_dirs = []
for i in range(state.num_classes):
class_dir = os.path.join(state.dataset_path, f'classe_{i}')
os.makedirs(class_dir, exist_ok=True)
state.class_dirs.append(class_dir)
return f"✅ Criados {state.num_classes} diretórios"
except Exception as e:
return f"❌ Erro: {str(e)}"
def set_class_labels(labels_text):
"""Define rótulos das classes (separados por vírgula)"""
try:
labels = [label.strip() for label in labels_text.split(',') if label.strip()]
if len(labels) != state.num_classes:
return f"❌ Forneça {state.num_classes} rótulos separados por vírgula"
state.class_labels = labels
return f"✅ Rótulos: {', '.join(state.class_labels)}"
except Exception as e:
return f"❌ Erro: {str(e)}"
def upload_images(class_id, images):
"""Upload de imagens"""
try:
if not images:
return "❌ Selecione imagens"
class_idx = int(class_id)
if class_idx >= len(state.class_dirs):
return f"❌ Classe inválida"
class_dir = state.class_dirs[class_idx]
count = 0
for image in images:
if image is not None:
shutil.copy2(image, class_dir)
count += 1
class_name = state.class_labels[class_idx]
return f"✅ {count} imagens → {class_name}"
except Exception as e:
return f"❌ Erro: {str(e)}"
def prepare_data(batch_size):
"""Prepara dados"""
try:
if not state.dataset_path:
return "❌ Configure classes primeiro"
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
dataset = datasets.ImageFolder(state.dataset_path, transform=transform)
if len(dataset) < 6:
return f"❌ Poucas imagens ({len(dataset)}). Mínimo: 6"
# Divisão: 70% treino, 20% val, 10% teste
train_size = int(0.7 * len(dataset))
val_size = int(0.2 * len(dataset))
test_size = len(dataset) - train_size - val_size
train_dataset, val_dataset, test_dataset = random_split(
dataset, [train_size, val_size, test_size],
generator=torch.Generator().manual_seed(42)
)
state.train_loader = DataLoader(train_dataset, batch_size=int(batch_size), shuffle=True)
state.val_loader = DataLoader(val_dataset, batch_size=int(batch_size), shuffle=False)
state.test_loader = DataLoader(test_dataset, batch_size=int(batch_size), shuffle=False)
return f"✅ Dados preparados:\n• Treino: {train_size}\n• Validação: {val_size}\n• Teste: {test_size}"
except Exception as e:
return f"❌ Erro: {str(e)}"
def train_model(model_name, epochs, lr):
"""Treina modelo"""
try:
if state.train_loader is None:
return "❌ Prepare os dados primeiro"
# Carregar modelo
state.model = MODELS[model_name](pretrained=True)
# Adaptar camada final
if hasattr(state.model, 'fc'):
state.model.fc = nn.Linear(state.model.fc.in_features, state.num_classes)
elif hasattr(state.model, 'classifier'):
if isinstance(state.model.classifier, nn.Sequential):
state.model.classifier[-1] = nn.Linear(state.model.classifier[-1].in_features, state.num_classes)
state.model = state.model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(state.model.parameters(), lr=float(lr))
state.model.train()
results = [f"🚀 Treinando {model_name}"]
for epoch in range(int(epochs)):
running_loss = 0.0
correct = 0
total = 0
for inputs, labels in state.train_loader:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = state.model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
epoch_loss = running_loss / len(state.train_loader)
epoch_acc = 100. * correct / total
results.append(f"Época {epoch+1}: Loss={epoch_loss:.4f}, Acc={epoch_acc:.2f}%")
results.append("✅ Treinamento concluído!")
return "\n".join(results)
except Exception as e:
return f"❌ Erro: {str(e)}"
def evaluate_model():
"""Avalia modelo"""
try:
if state.model is None or state.test_loader is None:
return "❌ Modelo/dados não disponíveis"
state.model.eval()
all_preds = []
all_labels = []
with torch.no_grad():
for inputs, labels in state.test_loader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = state.model(inputs)
_, preds = torch.max(outputs, 1)
all_preds.extend(preds.cpu().numpy())
all_labels.extend(labels.cpu().numpy())
report = classification_report(
all_labels, all_preds,
target_names=state.class_labels,
zero_division=0
)
return f"📊 RELATÓRIO:\n\n{report}"
except Exception as e:
return f"❌ Erro: {str(e)}"
def generate_confusion_matrix():
"""Gera matriz de confusão"""
try:
if state.model is None or state.test_loader is None:
return None
state.model.eval()
all_preds = []
all_labels = []
with torch.no_grad():
for inputs, labels in state.test_loader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = state.model(inputs)
_, preds = torch.max(outputs, 1)
all_preds.extend(preds.cpu().numpy())
all_labels.extend(labels.cpu().numpy())
cm = confusion_matrix(all_labels, all_preds)
plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues",
xticklabels=state.class_labels,
yticklabels=state.class_labels)
plt.xlabel('Predições')
plt.ylabel('Valores Reais')
plt.title('Matriz de Confusão')
plt.tight_layout()
temp_path = tempfile.NamedTemporaryFile(suffix='.png', delete=False).name
plt.savefig(temp_path, dpi=150, bbox_inches='tight')
plt.close()
return temp_path
except Exception as e:
print(f"Erro matriz confusão: {e}")
return None
def predict_images(images):
"""Prediz imagens"""
try:
if state.model is None:
return "❌ Treine o modelo primeiro"
if not images:
return "❌ Selecione imagens"
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
state.model.eval()
results = []
for image_path in images:
if image_path:
image = Image.open(image_path).convert('RGB')
img_tensor = transform(image).unsqueeze(0).to(device)
with torch.no_grad():
outputs = state.model(img_tensor)
probs = torch.nn.functional.softmax(outputs[0], dim=0)
_, predicted = torch.max(outputs, 1)
class_id = predicted.item()
confidence = probs[class_id].item() * 100
class_name = state.class_labels[class_id]
results.append(f"📸 {os.path.basename(image_path)}")
results.append(f" 🎯 {class_name}")
results.append(f" 📊 {confidence:.2f}%")
results.append("-" * 30)
return "\n".join(results) if results else "❌ Nenhuma predição"
except Exception as e:
return f"❌ Erro: {str(e)}"
# Interface
with gr.Blocks(title="🖼️ Classificador", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# 🖼️ Sistema de Classificação de Imagens
**Instruções:** Configure → Upload → Treine → Avalie → Prediga
""")
with gr.Tab("1️⃣ Configuração"):
gr.Markdown("### 🎯 Configurar Classes")
num_classes = gr.Slider(
minimum=2, maximum=5, value=2, step=1,
label="Número de Classes"
)
setup_btn = gr.Button("🔧 Configurar", variant="primary")
setup_status = gr.Textbox(label="Status", lines=2)
gr.Markdown("### 🏷️ Definir Rótulos")
labels_input = gr.Textbox(
label="Rótulos (separados por vírgula)",
placeholder="gato, cachorro",
value="gato, cachorro"
)
labels_btn = gr.Button("🏷️ Definir Rótulos")
labels_status = gr.Textbox(label="Status Rótulos")
with gr.Tab("2️⃣ Upload"):
gr.Markdown("### 📤 Upload de Imagens")
class_selector = gr.Slider(
minimum=0, maximum=1, value=0, step=1,
label="Classe (0, 1, 2...)"
)
images_upload = gr.File(
label="Imagens",
file_count="multiple",
file_types=["image"]
)
upload_btn = gr.Button("📤 Upload", variant="primary")
upload_status = gr.Textbox(label="Status")
with gr.Tab("3️⃣ Treinamento"):
gr.Markdown("### ⚙️ Preparar Dados")
batch_size = gr.Slider(1, 32, 8, step=1, label="Batch Size")
prepare_btn = gr.Button("⚙️ Preparar", variant="primary")
prepare_status = gr.Textbox(label="Status", lines=4)
gr.Markdown("### 🚀 Treinar Modelo")
with gr.Row():
model_choice = gr.Radio(
choices=list(MODELS.keys()),
value="MobileNetV2",
label="Modelo"
)
epochs = gr.Slider(1, 10, 3, step=1, label="Épocas")
learning_rate = gr.Slider(0.0001, 0.01, 0.001, label="Learning Rate")
train_btn = gr.Button("🚀 Treinar", variant="primary")
train_status = gr.Textbox(label="Status Treinamento", lines=8)
with gr.Tab("4️⃣ Avaliação"):
gr.Markdown("### 📊 Avaliar Modelo")
with gr.Row():
eval_btn = gr.Button("📊 Avaliar", variant="primary")
matrix_btn = gr.Button("📈 Matriz Confusão")
eval_results = gr.Textbox(label="Relatório", lines=12)
confusion_matrix_plot = gr.Image(label="Matriz de Confusão")
with gr.Tab("5️⃣ Predição"):
gr.Markdown("### 🔮 Predizer Novas Imagens")
predict_images_input = gr.File(
label="Imagens para Predição",
file_count="multiple",
file_types=["image"]
)
predict_btn = gr.Button("🔮 Predizer", variant="primary")
predict_results = gr.Textbox(label="Resultados", lines=10)
# Conectar eventos
setup_btn.click(setup_classes, [num_classes], [setup_status])
labels_btn.click(set_class_labels, [labels_input], [labels_status])
upload_btn.click(upload_images, [class_selector, images_upload], [upload_status])
prepare_btn.click(prepare_data, [batch_size], [prepare_status])
train_btn.click(train_model, [model_choice, epochs, learning_rate], [train_status])
eval_btn.click(evaluate_model, [], [eval_results])
matrix_btn.click(generate_confusion_matrix, [], [confusion_matrix_plot])
predict_btn.click(predict_images, [predict_images_input], [predict_results])
if __name__ == "__main__":
demo.launch()