Spaces:
Runtime error
Runtime error
import os | |
import shutil | |
import gradio as gr | |
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
from torchvision import datasets, transforms, models | |
from torch.utils.data import DataLoader, random_split | |
from PIL import Image | |
import matplotlib | |
matplotlib.use('Agg') # Use non-interactive backend | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
import numpy as np | |
from sklearn.metrics import classification_report, confusion_matrix | |
import tempfile | |
import warnings | |
warnings.filterwarnings("ignore") | |
# Configuração | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print(f"🖥️ Device: {device}") | |
# Modelos disponíveis | |
MODELS = { | |
'ResNet18': models.resnet18, | |
'MobileNetV2': models.mobilenet_v2 | |
} | |
# Estado global | |
class AppState: | |
def __init__(self): | |
self.model = None | |
self.train_loader = None | |
self.val_loader = None | |
self.test_loader = None | |
self.dataset_path = None | |
self.class_dirs = [] | |
self.class_labels = [] | |
self.num_classes = 2 | |
state = AppState() | |
def setup_classes(num_classes_value): | |
"""Configura classes""" | |
try: | |
state.num_classes = int(num_classes_value) | |
state.dataset_path = tempfile.mkdtemp() | |
state.class_labels = [f'classe_{i}' for i in range(state.num_classes)] | |
state.class_dirs = [] | |
for i in range(state.num_classes): | |
class_dir = os.path.join(state.dataset_path, f'classe_{i}') | |
os.makedirs(class_dir, exist_ok=True) | |
state.class_dirs.append(class_dir) | |
return f"✅ Criados {state.num_classes} diretórios" | |
except Exception as e: | |
return f"❌ Erro: {str(e)}" | |
def set_class_labels(labels_text): | |
"""Define rótulos das classes (separados por vírgula)""" | |
try: | |
labels = [label.strip() for label in labels_text.split(',') if label.strip()] | |
if len(labels) != state.num_classes: | |
return f"❌ Forneça {state.num_classes} rótulos separados por vírgula" | |
state.class_labels = labels | |
return f"✅ Rótulos: {', '.join(state.class_labels)}" | |
except Exception as e: | |
return f"❌ Erro: {str(e)}" | |
def upload_images(class_id, images): | |
"""Upload de imagens""" | |
try: | |
if not images: | |
return "❌ Selecione imagens" | |
class_idx = int(class_id) | |
if class_idx >= len(state.class_dirs): | |
return f"❌ Classe inválida" | |
class_dir = state.class_dirs[class_idx] | |
count = 0 | |
for image in images: | |
if image is not None: | |
shutil.copy2(image, class_dir) | |
count += 1 | |
class_name = state.class_labels[class_idx] | |
return f"✅ {count} imagens → {class_name}" | |
except Exception as e: | |
return f"❌ Erro: {str(e)}" | |
def prepare_data(batch_size): | |
"""Prepara dados""" | |
try: | |
if not state.dataset_path: | |
return "❌ Configure classes primeiro" | |
transform = transforms.Compose([ | |
transforms.Resize((224, 224)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
]) | |
dataset = datasets.ImageFolder(state.dataset_path, transform=transform) | |
if len(dataset) < 6: | |
return f"❌ Poucas imagens ({len(dataset)}). Mínimo: 6" | |
# Divisão: 70% treino, 20% val, 10% teste | |
train_size = int(0.7 * len(dataset)) | |
val_size = int(0.2 * len(dataset)) | |
test_size = len(dataset) - train_size - val_size | |
train_dataset, val_dataset, test_dataset = random_split( | |
dataset, [train_size, val_size, test_size], | |
generator=torch.Generator().manual_seed(42) | |
) | |
state.train_loader = DataLoader(train_dataset, batch_size=int(batch_size), shuffle=True) | |
state.val_loader = DataLoader(val_dataset, batch_size=int(batch_size), shuffle=False) | |
state.test_loader = DataLoader(test_dataset, batch_size=int(batch_size), shuffle=False) | |
return f"✅ Dados preparados:\n• Treino: {train_size}\n• Validação: {val_size}\n• Teste: {test_size}" | |
except Exception as e: | |
return f"❌ Erro: {str(e)}" | |
def train_model(model_name, epochs, lr): | |
"""Treina modelo""" | |
try: | |
if state.train_loader is None: | |
return "❌ Prepare os dados primeiro" | |
# Carregar modelo | |
state.model = MODELS[model_name](pretrained=True) | |
# Adaptar camada final | |
if hasattr(state.model, 'fc'): | |
state.model.fc = nn.Linear(state.model.fc.in_features, state.num_classes) | |
elif hasattr(state.model, 'classifier'): | |
if isinstance(state.model.classifier, nn.Sequential): | |
state.model.classifier[-1] = nn.Linear(state.model.classifier[-1].in_features, state.num_classes) | |
state.model = state.model.to(device) | |
criterion = nn.CrossEntropyLoss() | |
optimizer = optim.Adam(state.model.parameters(), lr=float(lr)) | |
state.model.train() | |
results = [f"🚀 Treinando {model_name}"] | |
for epoch in range(int(epochs)): | |
running_loss = 0.0 | |
correct = 0 | |
total = 0 | |
for inputs, labels in state.train_loader: | |
inputs, labels = inputs.to(device), labels.to(device) | |
optimizer.zero_grad() | |
outputs = state.model(inputs) | |
loss = criterion(outputs, labels) | |
loss.backward() | |
optimizer.step() | |
running_loss += loss.item() | |
_, predicted = torch.max(outputs, 1) | |
total += labels.size(0) | |
correct += (predicted == labels).sum().item() | |
epoch_loss = running_loss / len(state.train_loader) | |
epoch_acc = 100. * correct / total | |
results.append(f"Época {epoch+1}: Loss={epoch_loss:.4f}, Acc={epoch_acc:.2f}%") | |
results.append("✅ Treinamento concluído!") | |
return "\n".join(results) | |
except Exception as e: | |
return f"❌ Erro: {str(e)}" | |
def evaluate_model(): | |
"""Avalia modelo""" | |
try: | |
if state.model is None or state.test_loader is None: | |
return "❌ Modelo/dados não disponíveis" | |
state.model.eval() | |
all_preds = [] | |
all_labels = [] | |
with torch.no_grad(): | |
for inputs, labels in state.test_loader: | |
inputs, labels = inputs.to(device), labels.to(device) | |
outputs = state.model(inputs) | |
_, preds = torch.max(outputs, 1) | |
all_preds.extend(preds.cpu().numpy()) | |
all_labels.extend(labels.cpu().numpy()) | |
report = classification_report( | |
all_labels, all_preds, | |
target_names=state.class_labels, | |
zero_division=0 | |
) | |
return f"📊 RELATÓRIO:\n\n{report}" | |
except Exception as e: | |
return f"❌ Erro: {str(e)}" | |
def generate_confusion_matrix(): | |
"""Gera matriz de confusão""" | |
try: | |
if state.model is None or state.test_loader is None: | |
return None | |
state.model.eval() | |
all_preds = [] | |
all_labels = [] | |
with torch.no_grad(): | |
for inputs, labels in state.test_loader: | |
inputs, labels = inputs.to(device), labels.to(device) | |
outputs = state.model(inputs) | |
_, preds = torch.max(outputs, 1) | |
all_preds.extend(preds.cpu().numpy()) | |
all_labels.extend(labels.cpu().numpy()) | |
cm = confusion_matrix(all_labels, all_preds) | |
plt.figure(figsize=(8, 6)) | |
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", | |
xticklabels=state.class_labels, | |
yticklabels=state.class_labels) | |
plt.xlabel('Predições') | |
plt.ylabel('Valores Reais') | |
plt.title('Matriz de Confusão') | |
plt.tight_layout() | |
temp_path = tempfile.NamedTemporaryFile(suffix='.png', delete=False).name | |
plt.savefig(temp_path, dpi=150, bbox_inches='tight') | |
plt.close() | |
return temp_path | |
except Exception as e: | |
print(f"Erro matriz confusão: {e}") | |
return None | |
def predict_images(images): | |
"""Prediz imagens""" | |
try: | |
if state.model is None: | |
return "❌ Treine o modelo primeiro" | |
if not images: | |
return "❌ Selecione imagens" | |
transform = transforms.Compose([ | |
transforms.Resize((224, 224)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
]) | |
state.model.eval() | |
results = [] | |
for image_path in images: | |
if image_path: | |
image = Image.open(image_path).convert('RGB') | |
img_tensor = transform(image).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
outputs = state.model(img_tensor) | |
probs = torch.nn.functional.softmax(outputs[0], dim=0) | |
_, predicted = torch.max(outputs, 1) | |
class_id = predicted.item() | |
confidence = probs[class_id].item() * 100 | |
class_name = state.class_labels[class_id] | |
results.append(f"📸 {os.path.basename(image_path)}") | |
results.append(f" 🎯 {class_name}") | |
results.append(f" 📊 {confidence:.2f}%") | |
results.append("-" * 30) | |
return "\n".join(results) if results else "❌ Nenhuma predição" | |
except Exception as e: | |
return f"❌ Erro: {str(e)}" | |
# Interface | |
with gr.Blocks(title="🖼️ Classificador", theme=gr.themes.Soft()) as demo: | |
gr.Markdown(""" | |
# 🖼️ Sistema de Classificação de Imagens | |
**Instruções:** Configure → Upload → Treine → Avalie → Prediga | |
""") | |
with gr.Tab("1️⃣ Configuração"): | |
gr.Markdown("### 🎯 Configurar Classes") | |
num_classes = gr.Slider( | |
minimum=2, maximum=5, value=2, step=1, | |
label="Número de Classes" | |
) | |
setup_btn = gr.Button("🔧 Configurar", variant="primary") | |
setup_status = gr.Textbox(label="Status", lines=2) | |
gr.Markdown("### 🏷️ Definir Rótulos") | |
labels_input = gr.Textbox( | |
label="Rótulos (separados por vírgula)", | |
placeholder="gato, cachorro", | |
value="gato, cachorro" | |
) | |
labels_btn = gr.Button("🏷️ Definir Rótulos") | |
labels_status = gr.Textbox(label="Status Rótulos") | |
with gr.Tab("2️⃣ Upload"): | |
gr.Markdown("### 📤 Upload de Imagens") | |
class_selector = gr.Slider( | |
minimum=0, maximum=1, value=0, step=1, | |
label="Classe (0, 1, 2...)" | |
) | |
images_upload = gr.File( | |
label="Imagens", | |
file_count="multiple", | |
file_types=["image"] | |
) | |
upload_btn = gr.Button("📤 Upload", variant="primary") | |
upload_status = gr.Textbox(label="Status") | |
with gr.Tab("3️⃣ Treinamento"): | |
gr.Markdown("### ⚙️ Preparar Dados") | |
batch_size = gr.Slider(1, 32, 8, step=1, label="Batch Size") | |
prepare_btn = gr.Button("⚙️ Preparar", variant="primary") | |
prepare_status = gr.Textbox(label="Status", lines=4) | |
gr.Markdown("### 🚀 Treinar Modelo") | |
with gr.Row(): | |
model_choice = gr.Radio( | |
choices=list(MODELS.keys()), | |
value="MobileNetV2", | |
label="Modelo" | |
) | |
epochs = gr.Slider(1, 10, 3, step=1, label="Épocas") | |
learning_rate = gr.Slider(0.0001, 0.01, 0.001, label="Learning Rate") | |
train_btn = gr.Button("🚀 Treinar", variant="primary") | |
train_status = gr.Textbox(label="Status Treinamento", lines=8) | |
with gr.Tab("4️⃣ Avaliação"): | |
gr.Markdown("### 📊 Avaliar Modelo") | |
with gr.Row(): | |
eval_btn = gr.Button("📊 Avaliar", variant="primary") | |
matrix_btn = gr.Button("📈 Matriz Confusão") | |
eval_results = gr.Textbox(label="Relatório", lines=12) | |
confusion_matrix_plot = gr.Image(label="Matriz de Confusão") | |
with gr.Tab("5️⃣ Predição"): | |
gr.Markdown("### 🔮 Predizer Novas Imagens") | |
predict_images_input = gr.File( | |
label="Imagens para Predição", | |
file_count="multiple", | |
file_types=["image"] | |
) | |
predict_btn = gr.Button("🔮 Predizer", variant="primary") | |
predict_results = gr.Textbox(label="Resultados", lines=10) | |
# Conectar eventos | |
setup_btn.click(setup_classes, [num_classes], [setup_status]) | |
labels_btn.click(set_class_labels, [labels_input], [labels_status]) | |
upload_btn.click(upload_images, [class_selector, images_upload], [upload_status]) | |
prepare_btn.click(prepare_data, [batch_size], [prepare_status]) | |
train_btn.click(train_model, [model_choice, epochs, learning_rate], [train_status]) | |
eval_btn.click(evaluate_model, [], [eval_results]) | |
matrix_btn.click(generate_confusion_matrix, [], [confusion_matrix_plot]) | |
predict_btn.click(predict_images, [predict_images_input], [predict_results]) | |
if __name__ == "__main__": | |
demo.launch() |