Spaces:
Runtime error
Runtime error
Commit
·
a2ab6d7
1
Parent(s):
6943d4d
go7
Browse files- app.py +220 -236
- requirements.txt +7 -7
app.py
CHANGED
@@ -7,6 +7,8 @@ import torch.optim as optim
|
|
7 |
from torchvision import datasets, transforms, models
|
8 |
from torch.utils.data import DataLoader, random_split
|
9 |
from PIL import Image
|
|
|
|
|
10 |
import matplotlib.pyplot as plt
|
11 |
import seaborn as sns
|
12 |
import numpy as np
|
@@ -15,9 +17,9 @@ import tempfile
|
|
15 |
import warnings
|
16 |
warnings.filterwarnings("ignore")
|
17 |
|
18 |
-
# Configuração
|
19 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
-
print(f"🖥️
|
21 |
|
22 |
# Modelos disponíveis
|
23 |
MODELS = {
|
@@ -25,77 +27,61 @@ MODELS = {
|
|
25 |
'MobileNetV2': models.mobilenet_v2
|
26 |
}
|
27 |
|
28 |
-
# Estado global
|
29 |
class AppState:
|
30 |
def __init__(self):
|
31 |
self.model = None
|
32 |
self.train_loader = None
|
33 |
-
self.val_loader = None
|
34 |
self.test_loader = None
|
35 |
self.dataset_path = None
|
36 |
self.class_dirs = []
|
37 |
self.class_labels = []
|
38 |
self.num_classes = 2
|
39 |
|
40 |
-
|
41 |
-
app_state = AppState()
|
42 |
|
43 |
def setup_classes(num_classes_value):
|
44 |
-
"""Configura
|
45 |
try:
|
46 |
-
|
|
|
|
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
# Inicializar rótulos padrão
|
52 |
-
app_state.class_labels = [f'classe_{i}' for i in range(app_state.num_classes)]
|
53 |
-
|
54 |
-
# Criar diretórios para cada classe
|
55 |
-
app_state.class_dirs = []
|
56 |
-
for i in range(app_state.num_classes):
|
57 |
-
class_dir = os.path.join(app_state.dataset_path, f'classe_{i}')
|
58 |
os.makedirs(class_dir, exist_ok=True)
|
59 |
-
|
60 |
-
|
61 |
-
choices = [(f"{i} - {app_state.class_labels[i]}", i) for i in range(app_state.num_classes)]
|
62 |
|
63 |
-
return
|
64 |
-
f"✅ Criados {app_state.num_classes} diretórios para classes",
|
65 |
-
gr.Dropdown(choices=choices, value=0)
|
66 |
-
)
|
67 |
except Exception as e:
|
68 |
-
return f"❌ Erro: {str(e)}"
|
69 |
|
70 |
-
def set_class_labels(
|
71 |
-
"""Define rótulos
|
72 |
try:
|
73 |
-
labels = [
|
74 |
-
filtered_labels = [label.strip() for label in labels if label.strip()][:app_state.num_classes]
|
75 |
|
76 |
-
if len(
|
77 |
-
return f"❌
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
return (
|
83 |
-
f"✅ Rótulos definidos: {', '.join(app_state.class_labels)}",
|
84 |
-
gr.Dropdown(choices=choices, value=0)
|
85 |
-
)
|
86 |
except Exception as e:
|
87 |
-
return f"❌ Erro: {str(e)}"
|
88 |
|
89 |
def upload_images(class_id, images):
|
90 |
-
"""
|
91 |
try:
|
92 |
if not images:
|
93 |
-
return "❌
|
94 |
|
95 |
-
|
96 |
-
|
|
|
97 |
|
98 |
-
class_dir =
|
99 |
count = 0
|
100 |
|
101 |
for image in images:
|
@@ -103,33 +89,29 @@ def upload_images(class_id, images):
|
|
103 |
shutil.copy2(image, class_dir)
|
104 |
count += 1
|
105 |
|
106 |
-
class_name =
|
107 |
-
return f"✅ {count} imagens
|
108 |
except Exception as e:
|
109 |
return f"❌ Erro: {str(e)}"
|
110 |
|
111 |
def prepare_data(batch_size):
|
112 |
-
"""Prepara
|
113 |
try:
|
114 |
-
if not
|
115 |
-
return "❌ Configure
|
116 |
|
117 |
-
# Transformações
|
118 |
transform = transforms.Compose([
|
119 |
transforms.Resize((224, 224)),
|
120 |
transforms.ToTensor(),
|
121 |
-
transforms.Normalize(
|
122 |
])
|
123 |
|
124 |
-
dataset = datasets.ImageFolder(
|
125 |
-
|
126 |
-
if len(dataset.classes) == 0:
|
127 |
-
return "❌ Nenhuma classe encontrada. Faça upload das imagens primeiro."
|
128 |
|
129 |
if len(dataset) < 6:
|
130 |
-
return f"❌
|
131 |
|
132 |
-
# Divisão
|
133 |
train_size = int(0.7 * len(dataset))
|
134 |
val_size = int(0.2 * len(dataset))
|
135 |
test_size = len(dataset) - train_size - val_size
|
@@ -139,268 +121,270 @@ def prepare_data(batch_size):
|
|
139 |
generator=torch.Generator().manual_seed(42)
|
140 |
)
|
141 |
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
|
146 |
-
return f"✅ Dados preparados: {train_size}
|
147 |
-
|
148 |
except Exception as e:
|
149 |
-
return f"❌ Erro
|
150 |
|
151 |
-
def
|
152 |
-
"""
|
153 |
try:
|
154 |
-
if
|
155 |
-
return "❌
|
156 |
|
157 |
# Carregar modelo
|
158 |
-
|
159 |
-
|
160 |
-
# Adaptar última camada
|
161 |
-
if hasattr(app_state.model, 'fc'):
|
162 |
-
app_state.model.fc = nn.Linear(app_state.model.fc.in_features, app_state.num_classes)
|
163 |
-
elif hasattr(app_state.model, 'classifier'):
|
164 |
-
if isinstance(app_state.model.classifier, nn.Sequential):
|
165 |
-
app_state.model.classifier[-1] = nn.Linear(app_state.model.classifier[-1].in_features, app_state.num_classes)
|
166 |
-
else:
|
167 |
-
app_state.model.classifier = nn.Linear(app_state.model.classifier.in_features, app_state.num_classes)
|
168 |
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
170 |
|
|
|
171 |
criterion = nn.CrossEntropyLoss()
|
172 |
-
optimizer = optim.Adam(
|
173 |
|
174 |
-
|
175 |
-
|
176 |
-
results = [f"🚀 Treinando {model_name} por {epochs} épocas"]
|
177 |
|
178 |
for epoch in range(int(epochs)):
|
179 |
running_loss = 0.0
|
180 |
correct = 0
|
181 |
total = 0
|
182 |
|
183 |
-
for inputs, labels in
|
184 |
inputs, labels = inputs.to(device), labels.to(device)
|
185 |
|
186 |
optimizer.zero_grad()
|
187 |
-
outputs =
|
188 |
loss = criterion(outputs, labels)
|
189 |
loss.backward()
|
190 |
optimizer.step()
|
191 |
|
192 |
running_loss += loss.item()
|
193 |
-
_, predicted = torch.max(outputs
|
194 |
total += labels.size(0)
|
195 |
correct += (predicted == labels).sum().item()
|
196 |
|
197 |
-
epoch_loss = running_loss / len(
|
198 |
epoch_acc = 100. * correct / total
|
199 |
results.append(f"Época {epoch+1}: Loss={epoch_loss:.4f}, Acc={epoch_acc:.2f}%")
|
200 |
|
201 |
results.append("✅ Treinamento concluído!")
|
202 |
return "\n".join(results)
|
203 |
-
|
204 |
except Exception as e:
|
205 |
-
return f"❌ Erro
|
206 |
|
207 |
def evaluate_model():
|
208 |
-
"""Avalia
|
209 |
try:
|
210 |
-
if
|
211 |
-
return "❌ Modelo
|
212 |
|
213 |
-
|
214 |
all_preds = []
|
215 |
all_labels = []
|
216 |
|
217 |
with torch.no_grad():
|
218 |
-
for inputs, labels in
|
219 |
inputs, labels = inputs.to(device), labels.to(device)
|
220 |
-
outputs =
|
221 |
_, preds = torch.max(outputs, 1)
|
222 |
all_preds.extend(preds.cpu().numpy())
|
223 |
all_labels.extend(labels.cpu().numpy())
|
224 |
|
225 |
-
report = classification_report(
|
226 |
-
|
227 |
-
|
|
|
|
|
|
|
228 |
except Exception as e:
|
229 |
-
return f"❌ Erro
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
|
231 |
def predict_images(images):
|
232 |
-
"""
|
233 |
try:
|
234 |
-
if
|
235 |
-
return "❌
|
236 |
|
237 |
if not images:
|
238 |
-
return "❌
|
239 |
|
240 |
transform = transforms.Compose([
|
241 |
transforms.Resize((224, 224)),
|
242 |
transforms.ToTensor(),
|
243 |
-
transforms.Normalize(
|
244 |
])
|
245 |
|
246 |
-
|
247 |
results = []
|
248 |
|
249 |
for image_path in images:
|
250 |
-
if image_path
|
251 |
image = Image.open(image_path).convert('RGB')
|
252 |
img_tensor = transform(image).unsqueeze(0).to(device)
|
253 |
|
254 |
with torch.no_grad():
|
255 |
-
outputs =
|
256 |
-
|
257 |
_, predicted = torch.max(outputs, 1)
|
258 |
|
259 |
-
|
260 |
-
confidence =
|
261 |
-
|
262 |
|
263 |
results.append(f"📸 {os.path.basename(image_path)}")
|
264 |
-
results.append(f" 🎯
|
265 |
-
results.append(f" 📊
|
266 |
-
results.append("-" *
|
267 |
|
268 |
-
return "\n".join(results) if results else "❌ Nenhuma predição
|
269 |
-
|
270 |
except Exception as e:
|
271 |
return f"❌ Erro: {str(e)}"
|
272 |
|
273 |
-
# Interface
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
3. Prepare os dados e treine
|
284 |
-
4. Avalie e faça predições!
|
285 |
-
""")
|
286 |
-
|
287 |
-
with gr.Tab("1️⃣ Configuração"):
|
288 |
-
with gr.Row():
|
289 |
-
num_classes_input = gr.Number(
|
290 |
-
label="Número de Classes",
|
291 |
-
value=2,
|
292 |
-
minimum=2,
|
293 |
-
maximum=5,
|
294 |
-
precision=0
|
295 |
-
)
|
296 |
-
setup_button = gr.Button("🔧 Configurar Classes", variant="primary")
|
297 |
-
|
298 |
-
setup_output = gr.Textbox(label="Status", lines=2)
|
299 |
-
|
300 |
-
gr.Markdown("### Rótulos das Classes")
|
301 |
-
|
302 |
-
with gr.Row():
|
303 |
-
label0 = gr.Textbox(label="Classe 0", placeholder="Ex: gato")
|
304 |
-
label1 = gr.Textbox(label="Classe 1", placeholder="Ex: cachorro")
|
305 |
-
|
306 |
-
with gr.Row():
|
307 |
-
label2 = gr.Textbox(label="Classe 2", placeholder="Ex: pássaro", visible=False)
|
308 |
-
label3 = gr.Textbox(label="Classe 3", placeholder="Ex: peixe", visible=False)
|
309 |
-
label4 = gr.Textbox(label="Classe 4", placeholder="Ex: hamster", visible=False)
|
310 |
-
|
311 |
-
set_labels_button = gr.Button("🏷️ Definir Rótulos")
|
312 |
-
labels_output = gr.Textbox(label="Status dos Rótulos")
|
313 |
-
|
314 |
-
# Dropdown que será atualizado
|
315 |
-
class_selector = gr.Dropdown(
|
316 |
-
label="Selecionar Classe",
|
317 |
-
choices=[(f"Classe 0", 0), (f"Classe 1", 1)],
|
318 |
-
value=0
|
319 |
-
)
|
320 |
-
|
321 |
-
with gr.Tab("2️⃣ Upload"):
|
322 |
-
images_upload = gr.File(
|
323 |
-
label="Selecionar Imagens",
|
324 |
-
file_count="multiple",
|
325 |
-
file_types=["image"]
|
326 |
-
)
|
327 |
-
upload_button = gr.Button("📤 Fazer Upload", variant="primary")
|
328 |
-
upload_output = gr.Textbox(label="Status do Upload")
|
329 |
-
|
330 |
-
with gr.Tab("3️⃣ Treinamento"):
|
331 |
-
batch_size = gr.Number(label="Batch Size", value=8, minimum=1, maximum=32)
|
332 |
-
prepare_button = gr.Button("⚙️ Preparar Dados", variant="primary")
|
333 |
-
prepare_output = gr.Textbox(label="Status", lines=3)
|
334 |
-
|
335 |
-
with gr.Row():
|
336 |
-
model_name = gr.Dropdown(
|
337 |
-
label="Modelo",
|
338 |
-
choices=list(MODELS.keys()),
|
339 |
-
value="MobileNetV2"
|
340 |
-
)
|
341 |
-
epochs = gr.Number(label="Épocas", value=3, minimum=1, maximum=10)
|
342 |
-
lr = gr.Number(label="Learning Rate", value=0.001, minimum=0.0001, maximum=0.1)
|
343 |
-
|
344 |
-
train_button = gr.Button("🚀 Treinar", variant="primary")
|
345 |
-
train_output = gr.Textbox(label="Status do Treinamento", lines=10)
|
346 |
-
|
347 |
-
with gr.Tab("4️⃣ Avaliação"):
|
348 |
-
eval_button = gr.Button("📊 Avaliar", variant="primary")
|
349 |
-
eval_output = gr.Textbox(label="Relatório", lines=15)
|
350 |
-
|
351 |
-
with gr.Tab("5️⃣ Predição"):
|
352 |
-
predict_images_input = gr.File(
|
353 |
-
label="Imagens para Predição",
|
354 |
-
file_count="multiple",
|
355 |
-
file_types=["image"]
|
356 |
-
)
|
357 |
-
predict_button = gr.Button("🔮 Predizer", variant="primary")
|
358 |
-
predict_output = gr.Textbox(label="Resultados", lines=10)
|
359 |
-
|
360 |
-
# Conectar eventos
|
361 |
-
setup_button.click(
|
362 |
-
fn=setup_classes,
|
363 |
-
inputs=[num_classes_input],
|
364 |
-
outputs=[setup_output, class_selector]
|
365 |
-
)
|
366 |
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
outputs=[labels_output, class_selector]
|
371 |
)
|
372 |
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
)
|
378 |
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
)
|
384 |
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
|
|
|
|
|
|
|
|
|
|
389 |
)
|
390 |
|
391 |
-
|
392 |
-
|
393 |
-
|
|
|
394 |
)
|
395 |
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
400 |
)
|
|
|
|
|
|
|
401 |
|
402 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
403 |
|
404 |
if __name__ == "__main__":
|
405 |
-
demo
|
406 |
-
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
7 |
from torchvision import datasets, transforms, models
|
8 |
from torch.utils.data import DataLoader, random_split
|
9 |
from PIL import Image
|
10 |
+
import matplotlib
|
11 |
+
matplotlib.use('Agg') # Use non-interactive backend
|
12 |
import matplotlib.pyplot as plt
|
13 |
import seaborn as sns
|
14 |
import numpy as np
|
|
|
17 |
import warnings
|
18 |
warnings.filterwarnings("ignore")
|
19 |
|
20 |
+
# Configuração
|
21 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
22 |
+
print(f"🖥️ Device: {device}")
|
23 |
|
24 |
# Modelos disponíveis
|
25 |
MODELS = {
|
|
|
27 |
'MobileNetV2': models.mobilenet_v2
|
28 |
}
|
29 |
|
30 |
+
# Estado global
|
31 |
class AppState:
|
32 |
def __init__(self):
|
33 |
self.model = None
|
34 |
self.train_loader = None
|
35 |
+
self.val_loader = None
|
36 |
self.test_loader = None
|
37 |
self.dataset_path = None
|
38 |
self.class_dirs = []
|
39 |
self.class_labels = []
|
40 |
self.num_classes = 2
|
41 |
|
42 |
+
state = AppState()
|
|
|
43 |
|
44 |
def setup_classes(num_classes_value):
|
45 |
+
"""Configura classes"""
|
46 |
try:
|
47 |
+
state.num_classes = int(num_classes_value)
|
48 |
+
state.dataset_path = tempfile.mkdtemp()
|
49 |
+
state.class_labels = [f'classe_{i}' for i in range(state.num_classes)]
|
50 |
|
51 |
+
state.class_dirs = []
|
52 |
+
for i in range(state.num_classes):
|
53 |
+
class_dir = os.path.join(state.dataset_path, f'classe_{i}')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
os.makedirs(class_dir, exist_ok=True)
|
55 |
+
state.class_dirs.append(class_dir)
|
|
|
|
|
56 |
|
57 |
+
return f"✅ Criados {state.num_classes} diretórios"
|
|
|
|
|
|
|
58 |
except Exception as e:
|
59 |
+
return f"❌ Erro: {str(e)}"
|
60 |
|
61 |
+
def set_class_labels(labels_text):
|
62 |
+
"""Define rótulos das classes (separados por vírgula)"""
|
63 |
try:
|
64 |
+
labels = [label.strip() for label in labels_text.split(',') if label.strip()]
|
|
|
65 |
|
66 |
+
if len(labels) != state.num_classes:
|
67 |
+
return f"❌ Forneça {state.num_classes} rótulos separados por vírgula"
|
68 |
|
69 |
+
state.class_labels = labels
|
70 |
+
return f"✅ Rótulos: {', '.join(state.class_labels)}"
|
|
|
|
|
|
|
|
|
|
|
71 |
except Exception as e:
|
72 |
+
return f"❌ Erro: {str(e)}"
|
73 |
|
74 |
def upload_images(class_id, images):
|
75 |
+
"""Upload de imagens"""
|
76 |
try:
|
77 |
if not images:
|
78 |
+
return "❌ Selecione imagens"
|
79 |
|
80 |
+
class_idx = int(class_id)
|
81 |
+
if class_idx >= len(state.class_dirs):
|
82 |
+
return f"❌ Classe inválida"
|
83 |
|
84 |
+
class_dir = state.class_dirs[class_idx]
|
85 |
count = 0
|
86 |
|
87 |
for image in images:
|
|
|
89 |
shutil.copy2(image, class_dir)
|
90 |
count += 1
|
91 |
|
92 |
+
class_name = state.class_labels[class_idx]
|
93 |
+
return f"✅ {count} imagens → {class_name}"
|
94 |
except Exception as e:
|
95 |
return f"❌ Erro: {str(e)}"
|
96 |
|
97 |
def prepare_data(batch_size):
|
98 |
+
"""Prepara dados"""
|
99 |
try:
|
100 |
+
if not state.dataset_path:
|
101 |
+
return "❌ Configure classes primeiro"
|
102 |
|
|
|
103 |
transform = transforms.Compose([
|
104 |
transforms.Resize((224, 224)),
|
105 |
transforms.ToTensor(),
|
106 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
107 |
])
|
108 |
|
109 |
+
dataset = datasets.ImageFolder(state.dataset_path, transform=transform)
|
|
|
|
|
|
|
110 |
|
111 |
if len(dataset) < 6:
|
112 |
+
return f"❌ Poucas imagens ({len(dataset)}). Mínimo: 6"
|
113 |
|
114 |
+
# Divisão: 70% treino, 20% val, 10% teste
|
115 |
train_size = int(0.7 * len(dataset))
|
116 |
val_size = int(0.2 * len(dataset))
|
117 |
test_size = len(dataset) - train_size - val_size
|
|
|
121 |
generator=torch.Generator().manual_seed(42)
|
122 |
)
|
123 |
|
124 |
+
state.train_loader = DataLoader(train_dataset, batch_size=int(batch_size), shuffle=True)
|
125 |
+
state.val_loader = DataLoader(val_dataset, batch_size=int(batch_size), shuffle=False)
|
126 |
+
state.test_loader = DataLoader(test_dataset, batch_size=int(batch_size), shuffle=False)
|
127 |
|
128 |
+
return f"✅ Dados preparados:\n• Treino: {train_size}\n• Validação: {val_size}\n• Teste: {test_size}"
|
|
|
129 |
except Exception as e:
|
130 |
+
return f"❌ Erro: {str(e)}"
|
131 |
|
132 |
+
def train_model(model_name, epochs, lr):
|
133 |
+
"""Treina modelo"""
|
134 |
try:
|
135 |
+
if state.train_loader is None:
|
136 |
+
return "❌ Prepare os dados primeiro"
|
137 |
|
138 |
# Carregar modelo
|
139 |
+
state.model = MODELS[model_name](pretrained=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
+
# Adaptar camada final
|
142 |
+
if hasattr(state.model, 'fc'):
|
143 |
+
state.model.fc = nn.Linear(state.model.fc.in_features, state.num_classes)
|
144 |
+
elif hasattr(state.model, 'classifier'):
|
145 |
+
if isinstance(state.model.classifier, nn.Sequential):
|
146 |
+
state.model.classifier[-1] = nn.Linear(state.model.classifier[-1].in_features, state.num_classes)
|
147 |
|
148 |
+
state.model = state.model.to(device)
|
149 |
criterion = nn.CrossEntropyLoss()
|
150 |
+
optimizer = optim.Adam(state.model.parameters(), lr=float(lr))
|
151 |
|
152 |
+
state.model.train()
|
153 |
+
results = [f"🚀 Treinando {model_name}"]
|
|
|
154 |
|
155 |
for epoch in range(int(epochs)):
|
156 |
running_loss = 0.0
|
157 |
correct = 0
|
158 |
total = 0
|
159 |
|
160 |
+
for inputs, labels in state.train_loader:
|
161 |
inputs, labels = inputs.to(device), labels.to(device)
|
162 |
|
163 |
optimizer.zero_grad()
|
164 |
+
outputs = state.model(inputs)
|
165 |
loss = criterion(outputs, labels)
|
166 |
loss.backward()
|
167 |
optimizer.step()
|
168 |
|
169 |
running_loss += loss.item()
|
170 |
+
_, predicted = torch.max(outputs, 1)
|
171 |
total += labels.size(0)
|
172 |
correct += (predicted == labels).sum().item()
|
173 |
|
174 |
+
epoch_loss = running_loss / len(state.train_loader)
|
175 |
epoch_acc = 100. * correct / total
|
176 |
results.append(f"Época {epoch+1}: Loss={epoch_loss:.4f}, Acc={epoch_acc:.2f}%")
|
177 |
|
178 |
results.append("✅ Treinamento concluído!")
|
179 |
return "\n".join(results)
|
|
|
180 |
except Exception as e:
|
181 |
+
return f"❌ Erro: {str(e)}"
|
182 |
|
183 |
def evaluate_model():
|
184 |
+
"""Avalia modelo"""
|
185 |
try:
|
186 |
+
if state.model is None or state.test_loader is None:
|
187 |
+
return "❌ Modelo/dados não disponíveis"
|
188 |
|
189 |
+
state.model.eval()
|
190 |
all_preds = []
|
191 |
all_labels = []
|
192 |
|
193 |
with torch.no_grad():
|
194 |
+
for inputs, labels in state.test_loader:
|
195 |
inputs, labels = inputs.to(device), labels.to(device)
|
196 |
+
outputs = state.model(inputs)
|
197 |
_, preds = torch.max(outputs, 1)
|
198 |
all_preds.extend(preds.cpu().numpy())
|
199 |
all_labels.extend(labels.cpu().numpy())
|
200 |
|
201 |
+
report = classification_report(
|
202 |
+
all_labels, all_preds,
|
203 |
+
target_names=state.class_labels,
|
204 |
+
zero_division=0
|
205 |
+
)
|
206 |
+
return f"📊 RELATÓRIO:\n\n{report}"
|
207 |
except Exception as e:
|
208 |
+
return f"❌ Erro: {str(e)}"
|
209 |
+
|
210 |
+
def generate_confusion_matrix():
|
211 |
+
"""Gera matriz de confusão"""
|
212 |
+
try:
|
213 |
+
if state.model is None or state.test_loader is None:
|
214 |
+
return None
|
215 |
+
|
216 |
+
state.model.eval()
|
217 |
+
all_preds = []
|
218 |
+
all_labels = []
|
219 |
+
|
220 |
+
with torch.no_grad():
|
221 |
+
for inputs, labels in state.test_loader:
|
222 |
+
inputs, labels = inputs.to(device), labels.to(device)
|
223 |
+
outputs = state.model(inputs)
|
224 |
+
_, preds = torch.max(outputs, 1)
|
225 |
+
all_preds.extend(preds.cpu().numpy())
|
226 |
+
all_labels.extend(labels.cpu().numpy())
|
227 |
+
|
228 |
+
cm = confusion_matrix(all_labels, all_preds)
|
229 |
+
|
230 |
+
plt.figure(figsize=(8, 6))
|
231 |
+
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues",
|
232 |
+
xticklabels=state.class_labels,
|
233 |
+
yticklabels=state.class_labels)
|
234 |
+
plt.xlabel('Predições')
|
235 |
+
plt.ylabel('Valores Reais')
|
236 |
+
plt.title('Matriz de Confusão')
|
237 |
+
plt.tight_layout()
|
238 |
+
|
239 |
+
temp_path = tempfile.NamedTemporaryFile(suffix='.png', delete=False).name
|
240 |
+
plt.savefig(temp_path, dpi=150, bbox_inches='tight')
|
241 |
+
plt.close()
|
242 |
+
|
243 |
+
return temp_path
|
244 |
+
except Exception as e:
|
245 |
+
print(f"Erro matriz confusão: {e}")
|
246 |
+
return None
|
247 |
|
248 |
def predict_images(images):
|
249 |
+
"""Prediz imagens"""
|
250 |
try:
|
251 |
+
if state.model is None:
|
252 |
+
return "❌ Treine o modelo primeiro"
|
253 |
|
254 |
if not images:
|
255 |
+
return "❌ Selecione imagens"
|
256 |
|
257 |
transform = transforms.Compose([
|
258 |
transforms.Resize((224, 224)),
|
259 |
transforms.ToTensor(),
|
260 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
261 |
])
|
262 |
|
263 |
+
state.model.eval()
|
264 |
results = []
|
265 |
|
266 |
for image_path in images:
|
267 |
+
if image_path:
|
268 |
image = Image.open(image_path).convert('RGB')
|
269 |
img_tensor = transform(image).unsqueeze(0).to(device)
|
270 |
|
271 |
with torch.no_grad():
|
272 |
+
outputs = state.model(img_tensor)
|
273 |
+
probs = torch.nn.functional.softmax(outputs[0], dim=0)
|
274 |
_, predicted = torch.max(outputs, 1)
|
275 |
|
276 |
+
class_id = predicted.item()
|
277 |
+
confidence = probs[class_id].item() * 100
|
278 |
+
class_name = state.class_labels[class_id]
|
279 |
|
280 |
results.append(f"📸 {os.path.basename(image_path)}")
|
281 |
+
results.append(f" 🎯 {class_name}")
|
282 |
+
results.append(f" 📊 {confidence:.2f}%")
|
283 |
+
results.append("-" * 30)
|
284 |
|
285 |
+
return "\n".join(results) if results else "❌ Nenhuma predição"
|
|
|
286 |
except Exception as e:
|
287 |
return f"❌ Erro: {str(e)}"
|
288 |
|
289 |
+
# Interface
|
290 |
+
with gr.Blocks(title="🖼️ Classificador", theme=gr.themes.Soft()) as demo:
|
291 |
+
|
292 |
+
gr.Markdown("""
|
293 |
+
# 🖼️ Sistema de Classificação de Imagens
|
294 |
+
**Instruções:** Configure → Upload → Treine → Avalie → Prediga
|
295 |
+
""")
|
296 |
+
|
297 |
+
with gr.Tab("1️⃣ Configuração"):
|
298 |
+
gr.Markdown("### 🎯 Configurar Classes")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
|
300 |
+
num_classes = gr.Slider(
|
301 |
+
minimum=2, maximum=5, value=2, step=1,
|
302 |
+
label="Número de Classes"
|
|
|
303 |
)
|
304 |
|
305 |
+
setup_btn = gr.Button("🔧 Configurar", variant="primary")
|
306 |
+
setup_status = gr.Textbox(label="Status", lines=2)
|
307 |
+
|
308 |
+
gr.Markdown("### 🏷️ Definir Rótulos")
|
|
|
309 |
|
310 |
+
labels_input = gr.Textbox(
|
311 |
+
label="Rótulos (separados por vírgula)",
|
312 |
+
placeholder="gato, cachorro",
|
313 |
+
value="gato, cachorro"
|
314 |
)
|
315 |
|
316 |
+
labels_btn = gr.Button("🏷️ Definir Rótulos")
|
317 |
+
labels_status = gr.Textbox(label="Status Rótulos")
|
318 |
+
|
319 |
+
with gr.Tab("2️⃣ Upload"):
|
320 |
+
gr.Markdown("### 📤 Upload de Imagens")
|
321 |
+
|
322 |
+
class_selector = gr.Slider(
|
323 |
+
minimum=0, maximum=1, value=0, step=1,
|
324 |
+
label="Classe (0, 1, 2...)"
|
325 |
)
|
326 |
|
327 |
+
images_upload = gr.File(
|
328 |
+
label="Imagens",
|
329 |
+
file_count="multiple",
|
330 |
+
file_types=["image"]
|
331 |
)
|
332 |
|
333 |
+
upload_btn = gr.Button("📤 Upload", variant="primary")
|
334 |
+
upload_status = gr.Textbox(label="Status")
|
335 |
+
|
336 |
+
with gr.Tab("3️⃣ Treinamento"):
|
337 |
+
gr.Markdown("### ⚙️ Preparar Dados")
|
338 |
+
|
339 |
+
batch_size = gr.Slider(1, 32, 8, step=1, label="Batch Size")
|
340 |
+
prepare_btn = gr.Button("⚙️ Preparar", variant="primary")
|
341 |
+
prepare_status = gr.Textbox(label="Status", lines=4)
|
342 |
+
|
343 |
+
gr.Markdown("### 🚀 Treinar Modelo")
|
344 |
+
|
345 |
+
with gr.Row():
|
346 |
+
model_choice = gr.Radio(
|
347 |
+
choices=list(MODELS.keys()),
|
348 |
+
value="MobileNetV2",
|
349 |
+
label="Modelo"
|
350 |
+
)
|
351 |
+
epochs = gr.Slider(1, 10, 3, step=1, label="Épocas")
|
352 |
+
learning_rate = gr.Slider(0.0001, 0.01, 0.001, label="Learning Rate")
|
353 |
+
|
354 |
+
train_btn = gr.Button("🚀 Treinar", variant="primary")
|
355 |
+
train_status = gr.Textbox(label="Status Treinamento", lines=8)
|
356 |
+
|
357 |
+
with gr.Tab("4️⃣ Avaliação"):
|
358 |
+
gr.Markdown("### 📊 Avaliar Modelo")
|
359 |
+
|
360 |
+
with gr.Row():
|
361 |
+
eval_btn = gr.Button("📊 Avaliar", variant="primary")
|
362 |
+
matrix_btn = gr.Button("📈 Matriz Confusão")
|
363 |
+
|
364 |
+
eval_results = gr.Textbox(label="Relatório", lines=12)
|
365 |
+
confusion_matrix_plot = gr.Image(label="Matriz de Confusão")
|
366 |
+
|
367 |
+
with gr.Tab("5️⃣ Predição"):
|
368 |
+
gr.Markdown("### 🔮 Predizer Novas Imagens")
|
369 |
+
|
370 |
+
predict_images_input = gr.File(
|
371 |
+
label="Imagens para Predição",
|
372 |
+
file_count="multiple",
|
373 |
+
file_types=["image"]
|
374 |
)
|
375 |
+
|
376 |
+
predict_btn = gr.Button("🔮 Predizer", variant="primary")
|
377 |
+
predict_results = gr.Textbox(label="Resultados", lines=10)
|
378 |
|
379 |
+
# Conectar eventos
|
380 |
+
setup_btn.click(setup_classes, [num_classes], [setup_status])
|
381 |
+
labels_btn.click(set_class_labels, [labels_input], [labels_status])
|
382 |
+
upload_btn.click(upload_images, [class_selector, images_upload], [upload_status])
|
383 |
+
prepare_btn.click(prepare_data, [batch_size], [prepare_status])
|
384 |
+
train_btn.click(train_model, [model_choice, epochs, learning_rate], [train_status])
|
385 |
+
eval_btn.click(evaluate_model, [], [eval_results])
|
386 |
+
matrix_btn.click(generate_confusion_matrix, [], [confusion_matrix_plot])
|
387 |
+
predict_btn.click(predict_images, [predict_images_input], [predict_results])
|
388 |
|
389 |
if __name__ == "__main__":
|
390 |
+
demo.launch()
|
|
requirements.txt
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
-
gradio==4.
|
2 |
-
torch==2.1
|
3 |
-
torchvision==0.
|
4 |
-
scikit-learn==1.3.
|
5 |
-
matplotlib==3.
|
6 |
-
seaborn==0.
|
7 |
numpy==1.24.3
|
8 |
-
Pillow==
|
|
|
1 |
+
gradio==4.20.0
|
2 |
+
torch==2.0.1
|
3 |
+
torchvision==0.15.2
|
4 |
+
scikit-learn==1.3.0
|
5 |
+
matplotlib==3.7.1
|
6 |
+
seaborn==0.12.2
|
7 |
numpy==1.24.3
|
8 |
+
Pillow==9.5.0
|