rntc's picture
Simplify leaderboard to EMEA-sen and MEDLINE tasks only
fefe31a
raw
history blame
3.59 kB
from dataclasses import dataclass, make_dataclass
from enum import Enum
import pandas as pd
from src.about import Tasks
def fields(raw_class):
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
name: str
type: str
displayed_by_default: bool
hidden: bool = False
never_hidden: bool = False
## Leaderboard columns
auto_eval_column_dict = []
# Init
auto_eval_column_dict.append(("model_type_symbol", ColumnContent("T", "str", True, never_hidden=True)))
auto_eval_column_dict.append(("model", ColumnContent("Model", "markdown", True, never_hidden=True)))
# Average score
auto_eval_column_dict.append(("average", ColumnContent("Average", "number", True)))
#Scores
for task in Tasks:
auto_eval_column_dict.append((task.name, ColumnContent(task.value.col_name, "number", True)))
# Model information
auto_eval_column_dict.append(("precision", ColumnContent("Precision", "str", False)))
auto_eval_column_dict.append(("license", ColumnContent("Hub License", "str", False)))
auto_eval_column_dict.append(("params", ColumnContent("#Params (B)", "number", False)))
auto_eval_column_dict.append(("likes", ColumnContent("Hub ❤️", "number", False)))
auto_eval_column_dict.append(("still_on_hub", ColumnContent("Available on the hub", "bool", False)))
auto_eval_column_dict.append(("revision", ColumnContent("Model sha", "str", False, False)))
# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
## For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn: # Queue column
model = ColumnContent("model", "markdown", True)
revision = ColumnContent("revision", "str", True)
precision = ColumnContent("precision", "str", True)
status = ColumnContent("status", "str", True)
## All the model information that we might need
@dataclass
class ModelDetails:
name: str
display_name: str = ""
symbol: str = "" # emoji
class ModelType(Enum):
FT = ModelDetails(name="fine-tuned", symbol="🔶")
Unknown = ModelDetails(name="", symbol="?")
def to_str(self, separator=" "):
return f"{self.value.symbol}{separator}{self.value.name}"
@staticmethod
def from_str(type):
if "fine-tuned" in type or "🔶" in type:
return ModelType.FT
return ModelType.Unknown
@staticmethod
def from_config(config):
"""Determine model type from configuration - for NER models, most will be fine-tuned"""
if hasattr(config, 'num_labels') and config.num_labels > 2:
return ModelType.FT # Fine-tuned for NER
return ModelType.Unknown
class WeightType(Enum):
Original = ModelDetails("Original")
class Precision(Enum):
float16 = ModelDetails("float16")
bfloat16 = ModelDetails("bfloat16")
Unknown = ModelDetails("?")
@staticmethod
def from_str(precision):
if precision in ["torch.float16", "float16"]:
return Precision.float16
if precision in ["torch.bfloat16", "bfloat16"]:
return Precision.bfloat16
return Precision.Unknown
# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
BENCHMARK_COLS = [t.value.col_name for t in Tasks]