Spaces:
Sleeping
Sleeping
# main.py | |
from __future__ import annotations | |
import os | |
import io | |
import torch | |
import numpy as np | |
import torchaudio | |
import nltk | |
import gradio as gr | |
from pydub import AudioSegment | |
from transformers import ( | |
SeamlessM4TFeatureExtractor, | |
SeamlessM4TTokenizer, | |
SeamlessM4Tv2ForSpeechToText, | |
AutoTokenizer, | |
AutoFeatureExtractor | |
) | |
from parler_tts import ParlerTTSForConditionalGeneration | |
nltk.download('punkt') | |
# === CONFIG === | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.bfloat16 if device != "cpu" else torch.float32 | |
SAMPLE_RATE = 16000 | |
DEFAULT_TARGET_LANGUAGE = "Hindi" | |
# === Load translation model === | |
trans_model = SeamlessM4Tv2ForSpeechToText.from_pretrained( | |
"ai4bharat/indic-seamless", torch_dtype=torch_dtype, token=HF_TOKEN | |
).to(device) | |
processor = SeamlessM4TFeatureExtractor.from_pretrained("ai4bharat/indic-seamless", token=HF_TOKEN) | |
tokenizer = SeamlessM4TTokenizer.from_pretrained("ai4bharat/indic-seamless", token=HF_TOKEN) | |
# === Load TTS models === | |
tts_repo = "ai4bharat/indic-parler-tts-pretrained" | |
tts_finetuned_repo = "ai4bharat/indic-parler-tts" | |
tts_model = ParlerTTSForConditionalGeneration.from_pretrained( | |
tts_repo, attn_implementation="eager", torch_dtype=torch_dtype | |
).to(device) | |
tts_finetuned_model = ParlerTTSForConditionalGeneration.from_pretrained( | |
tts_finetuned_repo, attn_implementation="eager", torch_dtype=torch_dtype | |
).to(device) | |
desc_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large") | |
text_tokenizer = AutoTokenizer.from_pretrained(tts_repo) | |
tts_sampling_rate = tts_model.audio_encoder.config.sampling_rate | |
# === Utilities === | |
def numpy_to_mp3(audio_array, sampling_rate): | |
if np.issubdtype(audio_array.dtype, np.floating): | |
audio_array = (audio_array / np.max(np.abs(audio_array))) * 32767 | |
audio_array = audio_array.astype(np.int16) | |
segment = AudioSegment( | |
audio_array.tobytes(), | |
frame_rate=sampling_rate, | |
sample_width=audio_array.dtype.itemsize, | |
channels=1 | |
) | |
mp3_io = io.BytesIO() | |
segment.export(mp3_io, format="mp3", bitrate="320k") | |
return mp3_io.getvalue() | |
def chunk_text(text, max_words=25): | |
sentences = nltk.sent_tokenize(text) | |
chunks, curr = [], "" | |
for s in sentences: | |
candidate = f"{curr} {s}".strip() | |
if len(candidate.split()) > max_words: | |
if curr: chunks.append(curr) | |
curr = s | |
else: | |
curr = candidate | |
if curr: chunks.append(curr) | |
return chunks | |
# === Translation === | |
def translate_audio(input_audio, target_language): | |
audio, orig_sr = torchaudio.load(input_audio) | |
audio = torchaudio.functional.resample(audio, orig_sr, SAMPLE_RATE) | |
inputs = processor(audio, sampling_rate=SAMPLE_RATE, return_tensors="pt").to(device, dtype=torch_dtype) | |
target_lang_code = "hin" # default Hindi, change as needed | |
gen_ids = trans_model.generate(**inputs, tgt_lang=target_lang_code)[0] | |
return tokenizer.decode(gen_ids, skip_special_tokens=True) | |
# === TTS generation === | |
def generate_tts(text, description, use_finetuned=False): | |
model = tts_finetuned_model if use_finetuned else tts_model | |
inputs = desc_tokenizer(description, return_tensors="pt").to(device) | |
chunks = chunk_text(text) | |
all_audio = [] | |
for chunk in chunks: | |
prompt = text_tokenizer(chunk, return_tensors="pt").to(device) | |
gen = model.generate( | |
input_ids=inputs.input_ids, | |
attention_mask=inputs.attention_mask, | |
prompt_input_ids=prompt.input_ids, | |
prompt_attention_mask=prompt.attention_mask, | |
do_sample=True, | |
return_dict_in_generate=True | |
) | |
if hasattr(gen, 'sequences') and hasattr(gen, 'audios_length'): | |
audio = gen.sequences[0, :gen.audios_length[0]] | |
audio_np = audio.float().cpu().numpy().flatten() | |
all_audio.append(audio_np) | |
combined = np.concatenate(all_audio) | |
return numpy_to_mp3(combined, sampling_rate=tts_sampling_rate) | |
# === Gradio UI === | |
with gr.Blocks() as demo: | |
gr.Markdown("## ποΈ Speech-to-Text β Text-to-Speech Demo") | |
with gr.Row(): | |
with gr.Column(): | |
input_audio = gr.Audio(label="Upload or record audio", type="filepath") | |
target_language = gr.Textbox(label="Target language (default Hindi)", value="Hindi") | |
btn_translate = gr.Button("Translate to text") | |
with gr.Column(): | |
translated_text = gr.Textbox(label="Translated text") | |
btn_translate.click( | |
translate_audio, | |
inputs=[input_audio, target_language], | |
outputs=translated_text | |
) | |
with gr.Row(): | |
with gr.Column(): | |
voice_desc = gr.Textbox(label="Voice description", value="A calm, neutral Indian voice, clear audio.") | |
use_finetuned = gr.Checkbox(label="Use fine-tuned TTS", value=True) | |
btn_tts = gr.Button("Generate speech") | |
with gr.Column(): | |
generated_audio = gr.Audio(label="Generated speech", format="mp3", autoplay=True) | |
btn_tts.click( | |
generate_tts, | |
inputs=[translated_text, voice_desc, use_finetuned], | |
outputs=generated_audio | |
) | |
demo.launch(share=True) | |