Spaces:
Sleeping
Sleeping
File size: 21,484 Bytes
c5224d3 4c36941 8c4aa75 3f6f5f7 3d567ab bd05b7b 6896b10 4c36941 e8d7a5b 940cf49 e8d7a5b bd05b7b c5224d3 3195f7f bd05b7b 3195f7f bb6fa7e bd05b7b 3195f7f bd05b7b 3195f7f 3601959 a5202a8 ee60006 df31ae3 a5202a8 bd05b7b a5202a8 df31ae3 ed9a008 9d09e02 33231b0 ee60006 bd05b7b a5202a8 bd05b7b a5202a8 bd05b7b df31ae3 bd05b7b a5202a8 bd05b7b 9190bb9 bd05b7b ee60006 bd05b7b 2010e21 bd05b7b 2010e21 554eaa1 3195f7f bd05b7b 3195f7f 3389471 b03c5d3 a5202a8 3389471 dfececa e8d7a5b b03c5d3 0cea5f2 b03c5d3 0cea5f2 a2d0717 6896b10 a5202a8 7bf88c1 6896b10 2010e21 6896b10 b03c5d3 6896b10 e4416c3 6896b10 2010e21 6896b10 2010e21 6896b10 2010e21 33231b0 a5202a8 5ea0bec 2010e21 a5202a8 5ea0bec a5202a8 5ea0bec a5202a8 5ea0bec df31ae3 5ea0bec 2010e21 df31ae3 33231b0 2010e21 bd05b7b fc5f4bd bd05b7b fc5f4bd bd05b7b 2010e21 fc5f4bd 5ea0bec 6896b10 fc5f4bd e4416c3 6896b10 5ea0bec 6896b10 fc5f4bd e4416c3 6896b10 5ea0bec fc5f4bd 6896b10 2010e21 fc5f4bd e4416c3 2010e21 fc5f4bd 37aa822 554eaa1 fc5f4bd 6896b10 fc5f4bd 2010e21 fc5f4bd 6896b10 2010e21 fc5f4bd 5ea0bec a5202a8 ed9a008 a5202a8 df31ae3 33231b0 ed9a008 33231b0 ed9a008 33231b0 ed9a008 33231b0 ed9a008 33231b0 ed9a008 a5202a8 33231b0 bd05b7b 2010e21 bd05b7b 2010e21 bd05b7b 33231b0 bd05b7b a5202a8 bd05b7b a5202a8 bd05b7b 33231b0 bd05b7b 2010e21 33231b0 bd05b7b 33231b0 bd05b7b 33231b0 bd05b7b a5202a8 bd05b7b a5202a8 bd05b7b 33231b0 bd05b7b 2010e21 33231b0 bd05b7b df31ae3 bd05b7b 33231b0 bd05b7b a5202a8 33231b0 a5202a8 33231b0 bd05b7b 2010e21 33231b0 a5202a8 df31ae3 a5202a8 df31ae3 a5202a8 df31ae3 ed9a008 df31ae3 33231b0 1642f78 33231b0 a5202a8 1642f78 2010e21 33231b0 bd05b7b 33231b0 bd05b7b 33231b0 bd05b7b a5202a8 33231b0 a5202a8 33231b0 2010e21 33231b0 df31ae3 ee60006 3389471 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 |
import gradio as gr
import os
from huggingface_hub import login
from mmlu_pro_eval_adapted import evaluate_mmlu_pro
import spaces
import pandas as pd
import time
import traceback
from dataset_previews import mmlupro_dataset_preview, format_preview_for_display
# Read token and login
hf_token = os.getenv("HF_READ_WRITE_TOKEN")
if hf_token:
login(hf_token)
else:
print("⚠️ No HF_READ_WRITE_TOKEN found in environment")
# ---------------------------------------------------------------------------
# 1. Model configuration
# ---------------------------------------------------------------------------
model_name = "mistralai/Mistral-7B-v0.1"
# ---------------------------------------------------------------------------
# 2. MMLU-Pro Evaluation
# ---------------------------------------------------------------------------
@spaces.GPU(duration=240)
def run_mmlu_evaluation(subject_selection_mode, num_subjects, selected_subjects, num_shots, all_questions, num_questions, progress=gr.Progress()):
"""
Runs the MMLU evaluation with the specified parameters.
Args:
subject_selection_mode (str): Mode of subject selection ("all", "number", or "specific")
num_subjects (int): Number of subjects to evaluate (1-14)
selected_subjects (list): List of specific subjects to evaluate
num_shots (int): Number of few-shot examples (0-5)
all_questions (bool): Whether to evaluate all questions per subject
num_questions (int): Number of examples per subject (1-100 or all)
progress (gr.Progress): Progress indicator
"""
try:
# Convert parameters if needed
if subject_selection_mode == "all":
num_subjects = -1
selected_subjects = []
elif subject_selection_mode == "specific":
num_subjects = len(selected_subjects) if selected_subjects else -1
if all_questions:
num_questions = -1
# Run evaluation with timing
start_time = time.time()
results = evaluate_mmlu_pro(
model_name,
num_subjects=num_subjects,
num_questions=num_questions,
num_shots=num_shots,
specific_subjects=selected_subjects if subject_selection_mode == "specific" else None
)
elapsed_time = time.time() - start_time
# Format results
overall_acc = results["overall_accuracy"]
min_subject, min_acc = results["min_accuracy_subject"]
max_subject, max_acc = results["max_accuracy_subject"]
# Create DataFrame from results table
results_df = pd.DataFrame(results["full_accuracy_table"])
# Calculate totals for the overall row
total_samples = results_df['Num_samples'].sum()
total_correct = results_df['Num_correct'].sum()
# Create overall row
overall_row = pd.DataFrame({
'Subject': ['**Overall**'],
'Num_samples': [total_samples],
'Num_correct': [total_correct],
'Accuracy': [overall_acc]
})
# Concatenate overall row with results
results_df = pd.concat([overall_row, results_df], ignore_index=True)
# Format the report
report = (
f"### Overall Results\n"
f"* Overall Accuracy: {overall_acc:.3f}\n"
f"* Best Performance: {max_subject} ({max_acc:.3f})\n"
f"* Worst Performance: {min_subject} ({min_acc:.3f})\n"
f"* Evaluation completed in {elapsed_time:.2f} seconds\n"
)
# Return values that re-enable UI components after completion
return (report,
results_df,
gr.update(interactive=True),
gr.update(visible=False),
gr.update(interactive=True),
gr.update(interactive=True),
gr.update(interactive=True),
gr.update(interactive=True),
gr.update(interactive=True),
gr.update(visible=True))
except Exception as e:
# Handle errors gracefully
error_trace = traceback.format_exc()
error_message = f"### Error during evaluation\n```\n{error_trace}\n```"
# Re-enable UI components on error
return (error_message,
None,
gr.update(interactive=True),
gr.update(visible=False),
gr.update(interactive=True),
gr.update(interactive=True),
gr.update(interactive=True),
gr.update(interactive=True),
gr.update(interactive=True),
gr.update(visible=False))
# ---------------------------------------------------------------------------
# 3. Gradio Interface
# ---------------------------------------------------------------------------
with gr.Blocks(css="""
#preview_header {
margin-bottom: 10px;
margin-top: 5px;
}
#preview_table {
background-color: #f8f9fa;
border-radius: 8px;
padding: 10px;
}
h1 {
text-align: center;
}
.section-spacing {
margin-top: 30px;
margin-bottom: 30px;
}
.config-box {
border: 1px solid #ddd;
border-radius: 8px;
padding: 15px;
margin: 10px;
background-color: #f9f9f9;
}
""") as demo:
gr.Markdown("# Head-to-Head Model Evaluation Comparator")
gr.Markdown("""
This demo evaluates two models (or one model with two different configs), head-to-head, on a benchmark dataset.
Available Datasets: [MMLU-Pro](https://huggingface.co/datasets/TIGER-Lab/MMLU-Pro)
Available Models: [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
""")
# Dataset Selection Section
gr.Markdown("## (A) Select Dataset for Evaluation", elem_classes=["section-spacing"])
with gr.Row():
dataset_dropdown = gr.Dropdown(
choices=["(Select Dataset)", "MMLU-Pro"],
value="(Select Dataset)",
label="Dataset",
info="Select a dataset to perform the Head-to-Head Evaluation on. Available Datasets: [MMLU-Pro](https://huggingface.co/datasets/TIGER-Lab/MMLU-Pro)"
)
preview_toggle = gr.Button("Show Dataset Preview", interactive=False, variant="secondary")
# Dataset Preview Container - Initially hidden
with gr.Column(visible=False) as dataset_preview_container:
gr.Markdown("## Dataset Preview", elem_id="preview_header")
preview_output = gr.DataFrame(
interactive=False,
wrap=True,
elem_id="preview_table"
)
# Add vertical space after the preview
gr.Markdown(" ")
gr.Markdown(" ")
# Add more spacing between sections
gr.Markdown(" ", elem_classes=["section-spacing"])
gr.Markdown(" ", elem_classes=["section-spacing"])
# MMLU Config Container - Initially hidden until dataset is selected
with gr.Column(visible=False) as mmlu_config_container:
gr.Markdown("## (B) Select Dataset Configuration Options", elem_classes=["section-spacing"])
# Add more spacing
gr.Markdown(" ")
with gr.Row():
# Left column for subject selection
with gr.Column(scale=1):
with gr.Box(elem_classes=["config-box"]):
gr.Markdown("### Choose Subjects")
subject_selection_mode = gr.Radio(
choices=["Evaluate All Subjects", "Choose Number of Subjects", "Specify which Subjects to Evaluate"],
value="Evaluate All Subjects",
label="Subject Selection Mode"
)
# Subject number slider - initially hidden, shown when "Choose Number of Subjects" is selected
with gr.Column(visible=False) as num_subjects_container:
num_subjects_slider = gr.Slider(
minimum=1,
maximum=14,
value=14,
step=1,
label="Number of Subjects",
info="Number of subjects to evaluate (1-14). They will be loaded in alphabetical order."
)
# Subject checkboxes - initially hidden, shown when "Specify which Subjects to Evaluate" is selected
with gr.Column(visible=False) as specific_subjects_container:
# We'll populate this with checkboxes for each subject
# The actual subjects will come from the dataset preview
specific_subjects = gr.CheckboxGroup(
choices=[
"Biology (n=717)",
"Chemistry (n=500)",
"Physics (n=650)",
"Mathematics (n=800)",
"Computer Science (n=450)",
"History (n=300)",
"Literature (n=250)"
],
label="Select Specific Subjects",
info="Select which specific subjects to evaluate"
)
# Right column for few-shot examples
with gr.Column(scale=1):
with gr.Box(elem_classes=["config-box"]):
gr.Markdown("### Few-shot Configuration")
num_shots_slider = gr.Slider(
minimum=0,
maximum=5,
value=5,
step=1,
label="Number of Few-shot Examples",
info="Number of examples to use for few-shot learning (0-5)."
)
# Add spacing
gr.Markdown(" ")
with gr.Row():
all_questions_checkbox = gr.Checkbox(
label="Evaluate All Questions",
value=False,
info="When checked, evaluates all available questions for each subject"
)
questions_info_text = gr.Markdown(visible=False, value="**All 12,032 questions across all subjects will be evaluated**")
with gr.Row(elem_id="questions_selection_row"):
questions_container = gr.Column(scale=1, elem_id="questions_slider_container")
with questions_container:
num_questions_slider = gr.Slider(
minimum=1,
maximum=100,
value=20,
step=1,
label="Questions per Subject",
info="Choose a subset of questions (1-100) per subject. They will be loaded in order of question_id.",
interactive=True
)
with gr.Row():
with gr.Column(scale=1):
eval_mmlu_button = gr.Button("Run MMLU-Pro Evaluation", variant="primary", interactive=True)
cancel_mmlu_button = gr.Button("Cancel Evaluation", variant="stop", visible=False)
# Results Section - Initially hidden
with gr.Column(visible=False) as results_container:
results_output = gr.Markdown(label="Evaluation Results")
# Results table - Initially hidden until evaluation completes
with gr.Column(visible=False) as results_table_container:
with gr.Row():
results_table = gr.DataFrame(
interactive=True,
label="Detailed Results (Sortable)",
visible=True
)
# Track evaluation state
evaluation_state = gr.State({"running": False})
# Track preview visibility state
preview_visibility = gr.State(False)
# Function to show/hide configuration based on selected dataset
def update_interface_based_on_dataset(dataset, current_visibility):
if dataset == "MMLU-Pro":
return (
gr.update(visible=True), # mmlu_config_container
gr.update(visible=True), # results_container
gr.update(interactive=True), # preview_toggle
gr.update(visible=False), # dataset_preview_container - hide it initially
False, # Reset preview_visibility to False
gr.update(value="Show Dataset Preview") # Reset button text
)
else:
return (
gr.update(visible=False), # mmlu_config_container
gr.update(visible=False), # results_container
gr.update(interactive=False), # preview_toggle
gr.update(visible=False), # dataset_preview_container - hide when no dataset
False, # Reset preview_visibility to False
gr.update(value="Show Dataset Preview") # Reset button text
)
# Connect dataset dropdown to show/hide appropriate configuration
dataset_dropdown.change(
fn=update_interface_based_on_dataset,
inputs=[dataset_dropdown, preview_visibility],
outputs=[mmlu_config_container, results_container, preview_toggle, dataset_preview_container, preview_visibility, preview_toggle]
)
# Function to toggle dataset preview visibility
def toggle_preview(dataset, preview_visibility):
# Toggle the visibility state
is_visible = not preview_visibility
# Update button text based on new state
button_text = "Hide Dataset Preview" if is_visible else "Show Dataset Preview"
# Get preview data if becoming visible
if is_visible and dataset == "MMLU-Pro":
preview_data = mmlupro_dataset_preview(regenerate_preview=False) # Change regenerate_preview=True if you want to regenerate the preview.
formatted_preview = format_preview_for_display(preview_data)
return is_visible, gr.update(visible=True), formatted_preview, gr.update(value=button_text)
elif is_visible:
# For other datasets (not implemented yet)
return is_visible, gr.update(visible=True), None, gr.update(value=button_text)
else:
# Hiding the preview
return is_visible, gr.update(visible=False), None, gr.update(value=button_text)
# Connect preview toggle to show/hide dataset information
preview_toggle.click(
fn=toggle_preview,
inputs=[dataset_dropdown, preview_visibility],
outputs=[preview_visibility, dataset_preview_container, preview_output, preview_toggle]
)
# Function to update UI based on subject selection mode
def update_subject_selection_ui(mode):
if mode == "Evaluate All Subjects":
return gr.update(visible=False), gr.update(visible=False)
elif mode == "Choose Number of Subjects":
return gr.update(visible=True), gr.update(visible=False)
else: # "Specify which Subjects to Evaluate"
return gr.update(visible=False), gr.update(visible=True)
# Connect subject selection mode to UI updates
subject_selection_mode.change(
fn=update_subject_selection_ui,
inputs=[subject_selection_mode],
outputs=[num_subjects_container, specific_subjects_container]
)
# Update interface based on all_questions checkbox
def update_questions_interface(checked):
if checked:
return gr.update(visible=False), gr.update(visible=True)
else:
return gr.update(visible=True), gr.update(visible=False)
all_questions_checkbox.change(
fn=update_questions_interface,
inputs=[all_questions_checkbox],
outputs=[questions_container, questions_info_text]
)
# Function to convert subject selection mode to parameters
def get_subject_mode_param(mode):
if mode == "Evaluate All Subjects":
return "all"
elif mode == "Choose Number of Subjects":
return "number"
else: # "Specify which Subjects to Evaluate"
return "specific"
# Function to extract subject names from checkboxes
def get_subject_names(selected_subjects):
# Extract just the subject name without the count
return [subject.split(" (")[0] for subject in selected_subjects]
# Function to disable UI components during evaluation
def start_evaluation(state):
if state["running"]:
return [
state,
gr.update(interactive=False),
gr.update(interactive=False),
gr.update(interactive=False),
gr.update(interactive=False),
gr.update(interactive=False),
gr.update(interactive=False),
gr.update(visible=True),
"Evaluation already in progress. Please wait.",
None,
gr.update(visible=False)
]
# Update state to running
state["running"] = True
return [
state,
gr.update(interactive=False), # subject_selection_mode
gr.update(interactive=False), # num_subjects_slider
gr.update(interactive=False), # specific_subjects
gr.update(interactive=False), # num_shots_slider
gr.update(interactive=False), # all_questions_checkbox
gr.update(interactive=False), # num_questions_slider
gr.update(interactive=False), # eval_mmlu_button
gr.update(visible=True), # cancel_mmlu_button
"Starting evaluation...", # results_output
None, # results_table
gr.update(visible=False) # results_table_container
]
# Function to reset UI after evaluation
def finish_evaluation(state):
state["running"] = False
return state
# Function to handle cancel button click
def cancel_evaluation(state):
# Note: This doesn't actually stop the evaluation process
# It only updates the UI state to appear canceled
state["running"] = False
return [
state,
gr.update(interactive=True), # subject_selection_mode
gr.update(interactive=True), # num_subjects_slider
gr.update(interactive=True), # specific_subjects
gr.update(interactive=True), # num_shots_slider
gr.update(interactive=True), # all_questions_checkbox
gr.update(interactive=True), # num_questions_slider
gr.update(interactive=True), # eval_mmlu_button
gr.update(visible=False), # cancel_mmlu_button
"⚠️ Evaluation canceled by user (note: backend process may continue running)", # results_output
None, # results_table
gr.update(visible=False) # results_table_container
]
# Connect MMLU evaluation button with state tracking
eval_mmlu_button.click(
fn=start_evaluation,
inputs=[evaluation_state],
outputs=[
evaluation_state,
subject_selection_mode,
num_subjects_slider,
specific_subjects,
num_shots_slider,
all_questions_checkbox,
num_questions_slider,
eval_mmlu_button,
cancel_mmlu_button,
results_output,
results_table,
results_table_container
]
).then(
fn=lambda mode, num, subjects, shots, all_q, num_q:
run_mmlu_evaluation(
get_subject_mode_param(mode),
num,
get_subject_names(subjects),
shots,
all_q,
num_q
),
inputs=[
subject_selection_mode,
num_subjects_slider,
specific_subjects,
num_shots_slider,
all_questions_checkbox,
num_questions_slider
],
outputs=[
results_output,
results_table,
eval_mmlu_button,
cancel_mmlu_button,
subject_selection_mode,
num_subjects_slider,
num_shots_slider,
all_questions_checkbox,
num_questions_slider,
results_table_container
]
).then(
fn=finish_evaluation,
inputs=[evaluation_state],
outputs=[evaluation_state]
)
# Connect cancel button
cancel_mmlu_button.click(
fn=cancel_evaluation,
inputs=[evaluation_state],
outputs=[
evaluation_state,
subject_selection_mode,
num_subjects_slider,
specific_subjects,
num_shots_slider,
all_questions_checkbox,
num_questions_slider,
eval_mmlu_button,
cancel_mmlu_button,
results_output,
results_table,
results_table_container
]
)
demo.launch() |