Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
from huggingface_hub import login | |
from mmlu_pro_eval_adapted import evaluate_mmlu_pro | |
import spaces | |
import pandas as pd | |
import time | |
import traceback | |
from dataset_previews import mmlupro_dataset_preview, format_preview_for_display | |
# Read token and login | |
hf_token = os.getenv("HF_READ_WRITE_TOKEN") | |
if hf_token: | |
login(hf_token) | |
else: | |
print("⚠️ No HF_READ_WRITE_TOKEN found in environment") | |
# --------------------------------------------------------------------------- | |
# 1. Model configuration | |
# --------------------------------------------------------------------------- | |
model_name = "mistralai/Mistral-7B-v0.1" | |
# --------------------------------------------------------------------------- | |
# 2. MMLU-Pro Evaluation | |
# --------------------------------------------------------------------------- | |
def run_mmlu_evaluation(subject_selection_mode, num_subjects, selected_subjects, num_shots, all_questions, num_questions, progress=gr.Progress()): | |
""" | |
Runs the MMLU evaluation with the specified parameters. | |
Args: | |
subject_selection_mode (str): Mode of subject selection ("all", "number", or "specific") | |
num_subjects (int): Number of subjects to evaluate (1-14) | |
selected_subjects (list): List of specific subjects to evaluate | |
num_shots (int): Number of few-shot examples (0-5) | |
all_questions (bool): Whether to evaluate all questions per subject | |
num_questions (int): Number of examples per subject (1-100 or all) | |
progress (gr.Progress): Progress indicator | |
""" | |
try: | |
# Convert parameters if needed | |
if subject_selection_mode == "all": | |
num_subjects = -1 | |
selected_subjects = [] | |
elif subject_selection_mode == "specific": | |
num_subjects = len(selected_subjects) if selected_subjects else -1 | |
if all_questions: | |
num_questions = -1 | |
# Run evaluation with timing | |
start_time = time.time() | |
results = evaluate_mmlu_pro( | |
model_name, | |
num_subjects=num_subjects, | |
num_questions=num_questions, | |
num_shots=num_shots, | |
specific_subjects=selected_subjects if subject_selection_mode == "specific" else None | |
) | |
elapsed_time = time.time() - start_time | |
# Format results | |
overall_acc = results["overall_accuracy"] | |
min_subject, min_acc = results["min_accuracy_subject"] | |
max_subject, max_acc = results["max_accuracy_subject"] | |
# Create DataFrame from results table | |
results_df = pd.DataFrame(results["full_accuracy_table"]) | |
# Calculate totals for the overall row | |
total_samples = results_df['Num_samples'].sum() | |
total_correct = results_df['Num_correct'].sum() | |
# Create overall row | |
overall_row = pd.DataFrame({ | |
'Subject': ['**Overall**'], | |
'Num_samples': [total_samples], | |
'Num_correct': [total_correct], | |
'Accuracy': [overall_acc] | |
}) | |
# Concatenate overall row with results | |
results_df = pd.concat([overall_row, results_df], ignore_index=True) | |
# Format the report | |
report = ( | |
f"### Overall Results\n" | |
f"* Overall Accuracy: {overall_acc:.3f}\n" | |
f"* Best Performance: {max_subject} ({max_acc:.3f})\n" | |
f"* Worst Performance: {min_subject} ({min_acc:.3f})\n" | |
f"* Evaluation completed in {elapsed_time:.2f} seconds\n" | |
) | |
# Return values that re-enable UI components after completion | |
return (report, | |
results_df, | |
gr.update(interactive=True), | |
gr.update(visible=False), | |
gr.update(interactive=True), | |
gr.update(interactive=True), | |
gr.update(interactive=True), | |
gr.update(interactive=True), | |
gr.update(interactive=True), | |
gr.update(visible=True)) | |
except Exception as e: | |
# Handle errors gracefully | |
error_trace = traceback.format_exc() | |
error_message = f"### Error during evaluation\n```\n{error_trace}\n```" | |
# Re-enable UI components on error | |
return (error_message, | |
None, | |
gr.update(interactive=True), | |
gr.update(visible=False), | |
gr.update(interactive=True), | |
gr.update(interactive=True), | |
gr.update(interactive=True), | |
gr.update(interactive=True), | |
gr.update(interactive=True), | |
gr.update(visible=False)) | |
# --------------------------------------------------------------------------- | |
# 3. Gradio Interface | |
# --------------------------------------------------------------------------- | |
with gr.Blocks(css=""" | |
#preview_header { | |
margin-bottom: 10px; | |
margin-top: 5px; | |
} | |
#preview_table { | |
background-color: #f8f9fa; | |
border-radius: 8px; | |
padding: 10px; | |
} | |
h1 { | |
text-align: center; | |
} | |
.section-spacing { | |
margin-top: 30px; | |
margin-bottom: 30px; | |
} | |
.config-box { | |
border: 1px solid #ddd; | |
border-radius: 8px; | |
padding: 15px; | |
margin: 10px; | |
background-color: #f9f9f9; | |
} | |
""") as demo: | |
gr.Markdown("# Head-to-Head Model Evaluation Comparator") | |
gr.Markdown(""" | |
This demo evaluates two models (or one model with two different configs), head-to-head, on a benchmark dataset. | |
Available Datasets: [MMLU-Pro](https://huggingface.co/datasets/TIGER-Lab/MMLU-Pro) | |
Available Models: [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) | |
""") | |
# Dataset Selection Section | |
gr.Markdown("## (A) Select Dataset for Evaluation", elem_classes=["section-spacing"]) | |
with gr.Row(): | |
dataset_dropdown = gr.Dropdown( | |
choices=["(Select Dataset)", "MMLU-Pro"], | |
value="(Select Dataset)", | |
label="Dataset", | |
info="Select a dataset to perform the Head-to-Head Evaluation on. Available Datasets: [MMLU-Pro](https://huggingface.co/datasets/TIGER-Lab/MMLU-Pro)" | |
) | |
preview_toggle = gr.Button("Show Dataset Preview", interactive=False, variant="secondary") | |
# Dataset Preview Container - Initially hidden | |
with gr.Column(visible=False) as dataset_preview_container: | |
gr.Markdown("## Dataset Preview", elem_id="preview_header") | |
preview_output = gr.DataFrame( | |
interactive=False, | |
wrap=True, | |
elem_id="preview_table" | |
) | |
# Add vertical space after the preview | |
gr.Markdown(" ") | |
gr.Markdown(" ") | |
# Add more spacing between sections | |
gr.Markdown(" ", elem_classes=["section-spacing"]) | |
gr.Markdown(" ", elem_classes=["section-spacing"]) | |
# MMLU Config Container - Initially hidden until dataset is selected | |
with gr.Column(visible=False) as mmlu_config_container: | |
gr.Markdown("## (B) Select Dataset Configuration Options", elem_classes=["section-spacing"]) | |
# Add more spacing | |
gr.Markdown(" ") | |
with gr.Row(): | |
# Left column for subject selection | |
with gr.Column(scale=1): | |
with gr.Box(elem_classes=["config-box"]): | |
gr.Markdown("### Choose Subjects") | |
subject_selection_mode = gr.Radio( | |
choices=["Evaluate All Subjects", "Choose Number of Subjects", "Specify which Subjects to Evaluate"], | |
value="Evaluate All Subjects", | |
label="Subject Selection Mode" | |
) | |
# Subject number slider - initially hidden, shown when "Choose Number of Subjects" is selected | |
with gr.Column(visible=False) as num_subjects_container: | |
num_subjects_slider = gr.Slider( | |
minimum=1, | |
maximum=14, | |
value=14, | |
step=1, | |
label="Number of Subjects", | |
info="Number of subjects to evaluate (1-14). They will be loaded in alphabetical order." | |
) | |
# Subject checkboxes - initially hidden, shown when "Specify which Subjects to Evaluate" is selected | |
with gr.Column(visible=False) as specific_subjects_container: | |
# We'll populate this with checkboxes for each subject | |
# The actual subjects will come from the dataset preview | |
specific_subjects = gr.CheckboxGroup( | |
choices=[ | |
"Biology (n=717)", | |
"Chemistry (n=500)", | |
"Physics (n=650)", | |
"Mathematics (n=800)", | |
"Computer Science (n=450)", | |
"History (n=300)", | |
"Literature (n=250)" | |
], | |
label="Select Specific Subjects", | |
info="Select which specific subjects to evaluate" | |
) | |
# Right column for few-shot examples | |
with gr.Column(scale=1): | |
with gr.Box(elem_classes=["config-box"]): | |
gr.Markdown("### Few-shot Configuration") | |
num_shots_slider = gr.Slider( | |
minimum=0, | |
maximum=5, | |
value=5, | |
step=1, | |
label="Number of Few-shot Examples", | |
info="Number of examples to use for few-shot learning (0-5)." | |
) | |
# Add spacing | |
gr.Markdown(" ") | |
with gr.Row(): | |
all_questions_checkbox = gr.Checkbox( | |
label="Evaluate All Questions", | |
value=False, | |
info="When checked, evaluates all available questions for each subject" | |
) | |
questions_info_text = gr.Markdown(visible=False, value="**All 12,032 questions across all subjects will be evaluated**") | |
with gr.Row(elem_id="questions_selection_row"): | |
questions_container = gr.Column(scale=1, elem_id="questions_slider_container") | |
with questions_container: | |
num_questions_slider = gr.Slider( | |
minimum=1, | |
maximum=100, | |
value=20, | |
step=1, | |
label="Questions per Subject", | |
info="Choose a subset of questions (1-100) per subject. They will be loaded in order of question_id.", | |
interactive=True | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
eval_mmlu_button = gr.Button("Run MMLU-Pro Evaluation", variant="primary", interactive=True) | |
cancel_mmlu_button = gr.Button("Cancel Evaluation", variant="stop", visible=False) | |
# Results Section - Initially hidden | |
with gr.Column(visible=False) as results_container: | |
results_output = gr.Markdown(label="Evaluation Results") | |
# Results table - Initially hidden until evaluation completes | |
with gr.Column(visible=False) as results_table_container: | |
with gr.Row(): | |
results_table = gr.DataFrame( | |
interactive=True, | |
label="Detailed Results (Sortable)", | |
visible=True | |
) | |
# Track evaluation state | |
evaluation_state = gr.State({"running": False}) | |
# Track preview visibility state | |
preview_visibility = gr.State(False) | |
# Function to show/hide configuration based on selected dataset | |
def update_interface_based_on_dataset(dataset, current_visibility): | |
if dataset == "MMLU-Pro": | |
return ( | |
gr.update(visible=True), # mmlu_config_container | |
gr.update(visible=True), # results_container | |
gr.update(interactive=True), # preview_toggle | |
gr.update(visible=False), # dataset_preview_container - hide it initially | |
False, # Reset preview_visibility to False | |
gr.update(value="Show Dataset Preview") # Reset button text | |
) | |
else: | |
return ( | |
gr.update(visible=False), # mmlu_config_container | |
gr.update(visible=False), # results_container | |
gr.update(interactive=False), # preview_toggle | |
gr.update(visible=False), # dataset_preview_container - hide when no dataset | |
False, # Reset preview_visibility to False | |
gr.update(value="Show Dataset Preview") # Reset button text | |
) | |
# Connect dataset dropdown to show/hide appropriate configuration | |
dataset_dropdown.change( | |
fn=update_interface_based_on_dataset, | |
inputs=[dataset_dropdown, preview_visibility], | |
outputs=[mmlu_config_container, results_container, preview_toggle, dataset_preview_container, preview_visibility, preview_toggle] | |
) | |
# Function to toggle dataset preview visibility | |
def toggle_preview(dataset, preview_visibility): | |
# Toggle the visibility state | |
is_visible = not preview_visibility | |
# Update button text based on new state | |
button_text = "Hide Dataset Preview" if is_visible else "Show Dataset Preview" | |
# Get preview data if becoming visible | |
if is_visible and dataset == "MMLU-Pro": | |
preview_data = mmlupro_dataset_preview(regenerate_preview=False) # Change regenerate_preview=True if you want to regenerate the preview. | |
formatted_preview = format_preview_for_display(preview_data) | |
return is_visible, gr.update(visible=True), formatted_preview, gr.update(value=button_text) | |
elif is_visible: | |
# For other datasets (not implemented yet) | |
return is_visible, gr.update(visible=True), None, gr.update(value=button_text) | |
else: | |
# Hiding the preview | |
return is_visible, gr.update(visible=False), None, gr.update(value=button_text) | |
# Connect preview toggle to show/hide dataset information | |
preview_toggle.click( | |
fn=toggle_preview, | |
inputs=[dataset_dropdown, preview_visibility], | |
outputs=[preview_visibility, dataset_preview_container, preview_output, preview_toggle] | |
) | |
# Function to update UI based on subject selection mode | |
def update_subject_selection_ui(mode): | |
if mode == "Evaluate All Subjects": | |
return gr.update(visible=False), gr.update(visible=False) | |
elif mode == "Choose Number of Subjects": | |
return gr.update(visible=True), gr.update(visible=False) | |
else: # "Specify which Subjects to Evaluate" | |
return gr.update(visible=False), gr.update(visible=True) | |
# Connect subject selection mode to UI updates | |
subject_selection_mode.change( | |
fn=update_subject_selection_ui, | |
inputs=[subject_selection_mode], | |
outputs=[num_subjects_container, specific_subjects_container] | |
) | |
# Update interface based on all_questions checkbox | |
def update_questions_interface(checked): | |
if checked: | |
return gr.update(visible=False), gr.update(visible=True) | |
else: | |
return gr.update(visible=True), gr.update(visible=False) | |
all_questions_checkbox.change( | |
fn=update_questions_interface, | |
inputs=[all_questions_checkbox], | |
outputs=[questions_container, questions_info_text] | |
) | |
# Function to convert subject selection mode to parameters | |
def get_subject_mode_param(mode): | |
if mode == "Evaluate All Subjects": | |
return "all" | |
elif mode == "Choose Number of Subjects": | |
return "number" | |
else: # "Specify which Subjects to Evaluate" | |
return "specific" | |
# Function to extract subject names from checkboxes | |
def get_subject_names(selected_subjects): | |
# Extract just the subject name without the count | |
return [subject.split(" (")[0] for subject in selected_subjects] | |
# Function to disable UI components during evaluation | |
def start_evaluation(state): | |
if state["running"]: | |
return [ | |
state, | |
gr.update(interactive=False), | |
gr.update(interactive=False), | |
gr.update(interactive=False), | |
gr.update(interactive=False), | |
gr.update(interactive=False), | |
gr.update(interactive=False), | |
gr.update(visible=True), | |
"Evaluation already in progress. Please wait.", | |
None, | |
gr.update(visible=False) | |
] | |
# Update state to running | |
state["running"] = True | |
return [ | |
state, | |
gr.update(interactive=False), # subject_selection_mode | |
gr.update(interactive=False), # num_subjects_slider | |
gr.update(interactive=False), # specific_subjects | |
gr.update(interactive=False), # num_shots_slider | |
gr.update(interactive=False), # all_questions_checkbox | |
gr.update(interactive=False), # num_questions_slider | |
gr.update(interactive=False), # eval_mmlu_button | |
gr.update(visible=True), # cancel_mmlu_button | |
"Starting evaluation...", # results_output | |
None, # results_table | |
gr.update(visible=False) # results_table_container | |
] | |
# Function to reset UI after evaluation | |
def finish_evaluation(state): | |
state["running"] = False | |
return state | |
# Function to handle cancel button click | |
def cancel_evaluation(state): | |
# Note: This doesn't actually stop the evaluation process | |
# It only updates the UI state to appear canceled | |
state["running"] = False | |
return [ | |
state, | |
gr.update(interactive=True), # subject_selection_mode | |
gr.update(interactive=True), # num_subjects_slider | |
gr.update(interactive=True), # specific_subjects | |
gr.update(interactive=True), # num_shots_slider | |
gr.update(interactive=True), # all_questions_checkbox | |
gr.update(interactive=True), # num_questions_slider | |
gr.update(interactive=True), # eval_mmlu_button | |
gr.update(visible=False), # cancel_mmlu_button | |
"⚠️ Evaluation canceled by user (note: backend process may continue running)", # results_output | |
None, # results_table | |
gr.update(visible=False) # results_table_container | |
] | |
# Connect MMLU evaluation button with state tracking | |
eval_mmlu_button.click( | |
fn=start_evaluation, | |
inputs=[evaluation_state], | |
outputs=[ | |
evaluation_state, | |
subject_selection_mode, | |
num_subjects_slider, | |
specific_subjects, | |
num_shots_slider, | |
all_questions_checkbox, | |
num_questions_slider, | |
eval_mmlu_button, | |
cancel_mmlu_button, | |
results_output, | |
results_table, | |
results_table_container | |
] | |
).then( | |
fn=lambda mode, num, subjects, shots, all_q, num_q: | |
run_mmlu_evaluation( | |
get_subject_mode_param(mode), | |
num, | |
get_subject_names(subjects), | |
shots, | |
all_q, | |
num_q | |
), | |
inputs=[ | |
subject_selection_mode, | |
num_subjects_slider, | |
specific_subjects, | |
num_shots_slider, | |
all_questions_checkbox, | |
num_questions_slider | |
], | |
outputs=[ | |
results_output, | |
results_table, | |
eval_mmlu_button, | |
cancel_mmlu_button, | |
subject_selection_mode, | |
num_subjects_slider, | |
num_shots_slider, | |
all_questions_checkbox, | |
num_questions_slider, | |
results_table_container | |
] | |
).then( | |
fn=finish_evaluation, | |
inputs=[evaluation_state], | |
outputs=[evaluation_state] | |
) | |
# Connect cancel button | |
cancel_mmlu_button.click( | |
fn=cancel_evaluation, | |
inputs=[evaluation_state], | |
outputs=[ | |
evaluation_state, | |
subject_selection_mode, | |
num_subjects_slider, | |
specific_subjects, | |
num_shots_slider, | |
all_questions_checkbox, | |
num_questions_slider, | |
eval_mmlu_button, | |
cancel_mmlu_button, | |
results_output, | |
results_table, | |
results_table_container | |
] | |
) | |
demo.launch() |