Spaces:
Paused
Paused
import inspect | |
import math | |
from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
from typing_extensions import override | |
import PIL | |
import torch | |
from transformers import T5EncoderModel, T5Tokenizer | |
from diffusers import ( | |
AutoencoderKLCogVideoX, | |
CogVideoXDPMScheduler, | |
CogVideoXImageToVideoPipeline, | |
CogVideoXTransformer3DModel, | |
) | |
from diffusers.pipelines.cogvideo.pipeline_output import CogVideoXPipelineOutput | |
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback | |
from diffusers.image_processor import PipelineImageInput | |
from diffusers.pipelines.cogvideo.pipeline_cogvideox_image2video import retrieve_timesteps | |
from diffusers.utils import is_torch_xla_available | |
import pdb | |
if is_torch_xla_available(): | |
import torch_xla.core.xla_model as xm | |
XLA_AVAILABLE = True | |
else: | |
XLA_AVAILABLE = False | |
class FloVDOMSMCogVideoXImageToVideoPipeline(CogVideoXImageToVideoPipeline): | |
def __call__( | |
self, | |
image: PipelineImageInput, | |
prompt: Optional[Union[str, List[str]]] = None, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_frames: int = 49, | |
num_inference_steps: int = 50, | |
timesteps: Optional[List[int]] = None, | |
guidance_scale: float = 6, | |
use_dynamic_cfg: bool = False, | |
num_videos_per_prompt: int = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: str = "pil", | |
return_dict: bool = True, | |
attention_kwargs: Optional[Dict[str, Any]] = None, | |
callback_on_step_end: Optional[ | |
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] | |
] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
max_sequence_length: int = 226, | |
) -> Union[CogVideoXPipelineOutput, Tuple]: | |
""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
image (`PipelineImageInput`): | |
The input image to condition the generation on. Must be an image, a list of images or a `torch.Tensor`. | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
height (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial): | |
The height in pixels of the generated image. This is set to 480 by default for the best results. | |
width (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial): | |
The width in pixels of the generated image. This is set to 720 by default for the best results. | |
num_frames (`int`, defaults to `48`): | |
Number of frames to generate. Must be divisible by self.vae_scale_factor_temporal. Generated video will | |
contain 1 extra frame because CogVideoX is conditioned with (num_seconds * fps + 1) frames where | |
num_seconds is 6 and fps is 8. However, since videos can be saved at any fps, the only condition that | |
needs to be satisfied is that of divisibility mentioned above. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | |
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | |
passed will be used. Must be in descending order. | |
guidance_scale (`float`, *optional*, defaults to 7.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
num_videos_per_prompt (`int`, *optional*, defaults to 1): | |
The number of videos to generate per prompt. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead | |
of a plain tuple. | |
attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
callback_on_step_end (`Callable`, *optional*): | |
A function that calls at the end of each denoising steps during the inference. The function is called | |
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
`callback_on_step_end_tensor_inputs`. | |
callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
`._callback_tensor_inputs` attribute of your pipeline class. | |
max_sequence_length (`int`, defaults to `226`): | |
Maximum sequence length in encoded prompt. Must be consistent with | |
`self.transformer.config.max_text_seq_length` otherwise may lead to poor results. | |
Examples: | |
Returns: | |
[`~pipelines.cogvideo.pipeline_output.CogVideoXPipelineOutput`] or `tuple`: | |
[`~pipelines.cogvideo.pipeline_output.CogVideoXPipelineOutput`] if `return_dict` is True, otherwise a | |
`tuple`. When returning a tuple, the first element is a list with the generated images. | |
""" | |
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): | |
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs | |
height = height or self.transformer.config.sample_height * self.vae_scale_factor_spatial | |
width = width or self.transformer.config.sample_width * self.vae_scale_factor_spatial | |
num_frames = num_frames or self.transformer.config.sample_frames | |
num_videos_per_prompt = 1 | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
image=image, | |
prompt=prompt, | |
height=height, | |
width=width, | |
negative_prompt=negative_prompt, | |
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
latents=latents, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
) | |
self._guidance_scale = guidance_scale | |
self._current_timestep = None | |
self._attention_kwargs = attention_kwargs | |
self._interrupt = False | |
# 2. Default call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 3. Encode input prompt | |
prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
num_videos_per_prompt=num_videos_per_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
max_sequence_length=max_sequence_length, | |
device=device, | |
) | |
if do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds.to(negative_prompt_embeds.device)], dim=0) | |
# 4. Prepare timesteps | |
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) | |
self._num_timesteps = len(timesteps) | |
# 5. Prepare latents | |
latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1 | |
# For CogVideoX 1.5, the latent frames should be padded to make it divisible by patch_size_t | |
patch_size_t = self.transformer.config.patch_size_t | |
additional_frames = 0 | |
if patch_size_t is not None and latent_frames % patch_size_t != 0: | |
additional_frames = patch_size_t - latent_frames % patch_size_t | |
num_frames += additional_frames * self.vae_scale_factor_temporal | |
image = self.video_processor.preprocess(image, height=height, width=width).to( | |
device, dtype=prompt_embeds.dtype | |
) | |
latent_channels = self.transformer.config.in_channels // 2 | |
latents, image_latents = self.prepare_latents( | |
image, | |
batch_size * num_videos_per_prompt, | |
latent_channels, | |
num_frames, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 7. Create rotary embeds if required | |
image_rotary_emb = ( | |
self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device) | |
if self.transformer.config.use_rotary_positional_embeddings | |
else None | |
) | |
# 8. Create ofs embeds if required | |
ofs_emb = None if self.transformer.config.ofs_embed_dim is None else latents.new_full((1,), fill_value=2.0) | |
# 8. Denoising loop | |
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
# for DPM-solver++ | |
old_pred_original_sample = None | |
for i, t in enumerate(timesteps): | |
if self.interrupt: | |
continue | |
self._current_timestep = t | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# latent_image_input = torch.cat([image_latents] * 2) if do_classifier_free_guidance else image_latents | |
# latent_model_input = torch.cat([latent_model_input, latent_image_input], dim=2) | |
latent_image_input = torch.cat([image_latents] * 2) if do_classifier_free_guidance else image_latents | |
latent_model_input = torch.cat([latent_model_input, latent_image_input], dim=2) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timestep = t.expand(latent_model_input.shape[0]) | |
# predict noise model_output | |
noise_pred = self.transformer( | |
hidden_states=latent_model_input, | |
encoder_hidden_states=prompt_embeds, | |
timestep=timestep, | |
ofs=ofs_emb, | |
image_rotary_emb=image_rotary_emb, | |
attention_kwargs=attention_kwargs, | |
return_dict=False, | |
)[0] | |
noise_pred = noise_pred.float() | |
# perform guidance | |
if use_dynamic_cfg: | |
self._guidance_scale = 1 + guidance_scale * ( | |
(1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2 | |
) | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
if not isinstance(self.scheduler, CogVideoXDPMScheduler): | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
else: | |
latents, old_pred_original_sample = self.scheduler.step( | |
noise_pred, | |
old_pred_original_sample, | |
t, | |
timesteps[i - 1] if i > 0 else None, | |
latents, | |
**extra_step_kwargs, | |
return_dict=False, | |
) | |
latents = latents.to(prompt_embeds.dtype) | |
# call the callback, if provided | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if XLA_AVAILABLE: | |
xm.mark_step() | |
self._current_timestep = None | |
if not output_type == "latent": | |
# Discard any padding frames that were added for CogVideoX 1.5 | |
latents = latents[:, additional_frames:] | |
video = self.decode_latents(latents) | |
video = self.video_processor.postprocess_video(video=video, output_type=output_type) | |
else: | |
video = latents | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (video,) | |
return CogVideoXPipelineOutput(frames=video) |