Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from hydra.core.config_store import ConfigStore | |
from megatron.core import parallel_state | |
from torch.utils.data import DataLoader, DistributedSampler | |
from cosmos_predict1.diffusion.training.callbacks.iter_speed import IterSpeed | |
from cosmos_predict1.diffusion.training.callbacks.low_precision import LowPrecisionCallback | |
from cosmos_predict1.diffusion.training.datasets.dataset_multiview import Dataset | |
from cosmos_predict1.diffusion.training.models.extend_model_multiview import FSDPExtendDiffusionModel | |
from cosmos_predict1.diffusion.training.networks.general_dit_lvg_multiview import VideoExtendMultiviewGeneralDIT | |
from cosmos_predict1.utils import log | |
from cosmos_predict1.utils.callbacks.grad_clip import GradClip | |
from cosmos_predict1.utils.lazy_config import PLACEHOLDER | |
from cosmos_predict1.utils.lazy_config import LazyCall as L | |
from cosmos_predict1.utils.lazy_config import LazyDict | |
def get_sampler(dataset): | |
return DistributedSampler( | |
dataset, | |
num_replicas=parallel_state.get_data_parallel_world_size(), | |
rank=parallel_state.get_data_parallel_rank(), | |
shuffle=True, | |
seed=0, | |
) | |
cs = ConfigStore.instance() | |
num_frames = 57 | |
num_views = 5 | |
view_keys = ["pinhole_front_left", "pinhole_front", "pinhole_front_right", "pinhole_side_left", "pinhole_side_right"] | |
example_multiview_dataset_waymo = L(Dataset)( | |
dataset_dir="datasets/waymo", | |
sequence_interval=1, | |
num_frames=num_frames, | |
view_keys=view_keys, | |
video_size=(480, 848), | |
) | |
video2world_multiview_7b_example_waymo = LazyDict( | |
dict( | |
defaults=[ | |
{"override /net": "faditv2_7b"}, | |
{"override /conditioner": "video_cond"}, | |
{"override /ckpt_klass": "fsdp"}, | |
{"override /checkpoint": "local"}, | |
{"override /vae": "cosmos_diffusion_tokenizer_comp8x8x8"}, | |
"_self_", | |
], | |
job=dict( | |
project="posttraining", | |
group="diffusion_video2world", | |
name="video2world_multiview_7b_example_waymo", | |
), | |
optimizer=dict( | |
lr=2 ** (-14.3), # 2**(-14.3) approx 5e-5 | |
weight_decay=0.1, | |
betas=[0.9, 0.99], | |
eps=1e-10, | |
), | |
checkpoint=dict( | |
save_iter=200, | |
# broadcast_via_filesystem=True, | |
broadcast_via_filesystem=False, | |
load_path="checkpoints/Cosmos-Predict1-7B-Video2World-Sample-AV-Multiview/model.pt", | |
load_training_state=False, | |
strict_resume=False, | |
keys_not_to_resume=[], | |
), | |
trainer=dict( | |
max_iter=2000, | |
distributed_parallelism="fsdp", | |
logging_iter=200, | |
callbacks=dict( | |
grad_clip=L(GradClip)( | |
model_key="model", | |
fsdp_enabled=True, | |
), | |
low_prec=L(LowPrecisionCallback)(config=PLACEHOLDER, trainer=PLACEHOLDER, update_iter=1), | |
iter_speed=L(IterSpeed)( | |
every_n=200, | |
hit_thres=5, | |
), | |
), | |
), | |
model_parallel=dict( | |
sequence_parallel=False, | |
tensor_model_parallel_size=1, | |
context_parallel_size=1, | |
), | |
model=dict( | |
n_views=num_views, | |
# Use 16x16x32x40 latent shape for training | |
latent_shape=[ | |
16, # Latent channel dim | |
16, # Latent temporal dim | |
88, # Latent height dim | |
160, # Latent width dim | |
], | |
loss_reduce="mean", | |
ema=dict( | |
enabled=True, | |
), | |
fsdp_enabled=True, | |
fsdp=dict( | |
policy="block", | |
checkpoint=True, | |
min_num_params=1024, | |
sharding_group_size=32, | |
sharding_strategy="hybrid", | |
), | |
net=L(VideoExtendMultiviewGeneralDIT)( | |
rope_h_extrapolation_ratio=1, | |
rope_w_extrapolation_ratio=1, | |
rope_t_extrapolation_ratio=2, | |
n_views=num_views, | |
), | |
conditioner=dict( | |
video_cond_bool=dict( | |
condition_location="first_random_n", | |
cfg_unconditional_type="zero_condition_region_condition_mask", | |
apply_corruption_to_condition_region="noise_with_sigma", | |
condition_on_augment_sigma=False, | |
dropout_rate=0.0, # No dropout | |
first_random_n_num_condition_t_max=2, | |
normalize_condition_latent=False, | |
# Let the augment sigma mostly fall in the range of 0 to 0.3 | |
augment_sigma_sample_p_mean=-3.0, | |
augment_sigma_sample_p_std=2.0, | |
augment_sigma_sample_multiplier=1.0, | |
) | |
), | |
vae=dict(pixel_chunk_duration=num_frames), | |
), | |
model_obj=L(FSDPExtendDiffusionModel)( | |
config=PLACEHOLDER, | |
fsdp_checkpointer=PLACEHOLDER, | |
), | |
# warming up for first 2500 steps~(when resume from 310000) | |
scheduler=dict( | |
warm_up_steps=[2500], | |
cycle_lengths=[10000000000000], | |
f_start=[1.0e-6], | |
f_max=[1.0], | |
f_min=[1.0], | |
), | |
dataloader_train=L(DataLoader)( | |
dataset=example_multiview_dataset_waymo, | |
sampler=L(get_sampler)(dataset=example_multiview_dataset_waymo), | |
batch_size=1, | |
drop_last=True, | |
pin_memory=True, | |
num_workers=8, | |
), | |
dataloader_val=L(DataLoader)( | |
dataset=example_multiview_dataset_waymo, | |
sampler=L(get_sampler)(dataset=example_multiview_dataset_waymo), | |
batch_size=1, | |
drop_last=True, | |
pin_memory=True, | |
num_workers=8, | |
), | |
) | |
) | |
def register_experiments(cs): | |
# Register the experiments | |
for _item in [ | |
video2world_multiview_7b_example_waymo, | |
]: | |
experiment_name = _item["job"]["name"] | |
log.info(f"Registering experiment: {experiment_name}") | |
cs.store( | |
group="experiment", | |
package="_global_", | |
name=experiment_name, | |
node=_item, | |
) | |