Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import torch | |
from hydra.core.config_store import ConfigStore | |
from cosmos_predict1.autoregressive.configs.base.callbacks import BASIC_CALLBACKS, VIDEO_TEACHER_FORCING_CALLBACK | |
from cosmos_predict1.autoregressive.configs.base.dataloader import get_tealrobot_video | |
from cosmos_predict1.autoregressive.configs.base.optim import LambdaLinearLR | |
from cosmos_predict1.autoregressive.configs.experiment.video2video.basic import register_experiments | |
from cosmos_predict1.utils import config, log | |
from cosmos_predict1.utils.lazy_config import LazyCall as L | |
from cosmos_predict1.utils.scheduler import WarmupCosineLR | |
def register_checkpoint(cs): | |
checkpoint_local = config.CheckpointConfig( | |
save_iter=5000, | |
broadcast_via_filesystem=True, | |
) | |
cs.store(group="checkpoint", package="checkpoint", name="local", node=checkpoint_local) | |
def register_callbacks(cs): | |
cs.store(group="callbacks", package="trainer.callbacks", name="basic", node=BASIC_CALLBACKS) | |
cs.store( | |
group="callbacks", | |
package="trainer.callbacks", | |
name="video_teacher_forcing", | |
node=VIDEO_TEACHER_FORCING_CALLBACK, | |
) | |
def register_scheduler(cs): | |
cs.store( | |
group="scheduler", | |
package="scheduler", | |
name="warmup_cosine_lr", | |
node=L(WarmupCosineLR)(optimizer=None, warmup_iters=5000, lr_decay_iters="${trainer.max_iter}", min_lr=1e-8), | |
) | |
cs.store(group="scheduler", package="scheduler", name="lambdalinear", node=LambdaLinearLR) | |
def register_optimizer(cs): | |
cs.store( | |
group="optimizer", | |
package="optimizer", | |
name="fused_adamw", | |
node=L(torch.optim.AdamW)(params=None, lr=1e-3, weight_decay=0.05, fused=True), | |
) | |
cs.store( | |
group="optimizer", | |
package="optimizer", | |
name="sgd", | |
node=L(torch.optim.SGD)(params=None, lr=5e-6, momentum=0.9), | |
) | |
def register_training_data(cs): | |
cs.store( | |
group="data_train", | |
package="dataloader_train", | |
name="tealrobot_video_small", | |
node=get_tealrobot_video(num_frames=33, video_size=[384, 640]), | |
) | |
cs.store(group="data_train", package="dataloader_train", name="tealrobot_video", node=get_tealrobot_video()) | |
def register_configs(): | |
log.info("Registering configs for autoregressive_base") | |
cs = ConfigStore.instance() | |
register_callbacks(cs) | |
register_checkpoint(cs) | |
register_optimizer(cs) | |
register_scheduler(cs) | |
register_training_data(cs) | |
register_experiments(cs) | |