Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import argparse | |
import os | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from cosmos_predict1.auxiliary.guardrail.common.core import ContentSafetyGuardrail, GuardrailRunner | |
from cosmos_predict1.auxiliary.guardrail.llamaGuard3.categories import UNSAFE_CATEGORIES | |
from cosmos_predict1.utils import log, misc | |
SAFE = misc.Color.green("SAFE") | |
UNSAFE = misc.Color.red("UNSAFE") | |
class LlamaGuard3(ContentSafetyGuardrail): | |
def __init__( | |
self, | |
checkpoint_dir: str, | |
device="cuda" if torch.cuda.is_available() else "cpu", | |
) -> None: | |
self.checkpoint_dir = checkpoint_dir | |
self.device = device | |
self.dtype = torch.bfloat16 | |
model_id = "meta-llama/Llama-Guard-3-8B" | |
model_dir = os.path.join(self.checkpoint_dir, model_id) | |
self.model = AutoModelForCausalLM.from_pretrained(model_dir) | |
self.tokenizer = AutoTokenizer.from_pretrained(model_dir) | |
self.model.to(self.device, dtype=self.dtype).eval() | |
def get_llamaGuard3_block_message(self, moderation_output: str) -> str: | |
"""Extract the blocked category from the Llama Guard 3 model output.""" | |
block_msg = "Prompt blocked by Llama Guard 3." | |
try: | |
lines = moderation_output.splitlines() | |
categories_detected = [] | |
for line in lines[1:]: | |
line_stripped = line.split("<|eot_id|>")[0].strip() | |
for catagory in line_stripped.split(","): | |
catagory = catagory.strip() | |
if catagory not in UNSAFE_CATEGORIES: | |
log.warning(f"Unrecognized category from moderation output: {catagory}") | |
else: | |
categories_detected.append(catagory) | |
if len(categories_detected) > 0: | |
blocked_catagories = ", ".join([UNSAFE_CATEGORIES[catagory][:-1] for catagory in categories_detected]) | |
block_msg = f"{block_msg} Violations: {blocked_catagories}." | |
except Exception as e: | |
log.warning(f"Unable to extract blocked category from Llama Guard 3 output: {e}") | |
return block_msg | |
def filter_llamaGuard3_output(self, prompt: str) -> tuple[bool, str]: | |
"""Filter the Llama Guard 3 model output and return the safety status and message.""" | |
conversation = [{"role": "user", "content": prompt}] | |
input_ids = self.tokenizer.apply_chat_template( | |
conversation, categories=UNSAFE_CATEGORIES, return_tensors="pt" | |
).to("cuda") | |
prompt_len = input_ids.shape[1] | |
output = self.model.generate( | |
input_ids=input_ids, | |
max_new_tokens=100, | |
return_dict_in_generate=True, | |
pad_token_id=0, | |
) | |
generated_tokens = output.sequences[:, prompt_len:] | |
moderation_output = self.tokenizer.decode(generated_tokens[0], skip_special_tokens=False).strip() | |
if "unsafe" in moderation_output.lower(): | |
block_msg = self.get_llamaGuard3_block_message(moderation_output) | |
return False, block_msg | |
else: | |
return True, "" | |
def is_safe(self, prompt: str) -> tuple[bool, str]: | |
"""Check if the input prompt is safe according to the Llama Guard 3 model.""" | |
try: | |
return self.filter_llamaGuard3_output(prompt) | |
except Exception as e: | |
log.error(f"Unexpected error occurred when running Llama Guard 3 guardrail: {e}") | |
return True, "Unexpected error occurred when running Llama Guard 3 guardrail." | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--prompt", type=str, required=True, help="Input prompt") | |
parser.add_argument( | |
"--checkpoint_dir", | |
type=str, | |
help="Path to the Llama Guard 3 checkpoint folder", | |
) | |
return parser.parse_args() | |
def main(args): | |
llamaGuard3 = LlamaGuard3(checkpoint_dir=args.checkpoint_dir) | |
runner = GuardrailRunner(safety_models=[llamaGuard3]) | |
with misc.timer("Llama Guard 3 safety check"): | |
safety, message = runner.run_safety_check(args.prompt) | |
log.info(f"Input is: {'SAFE' if safety else 'UNSAFE'}") | |
log.info(f"Message: {message}") if not safety else None | |
if __name__ == "__main__": | |
args = parse_args() | |
main(args) | |