roll-ai's picture
Upload 381 files
b6af722 verified
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from cosmos_predict1.auxiliary.guardrail.common.core import ContentSafetyGuardrail, GuardrailRunner
from cosmos_predict1.auxiliary.guardrail.llamaGuard3.categories import UNSAFE_CATEGORIES
from cosmos_predict1.utils import log, misc
SAFE = misc.Color.green("SAFE")
UNSAFE = misc.Color.red("UNSAFE")
class LlamaGuard3(ContentSafetyGuardrail):
def __init__(
self,
checkpoint_dir: str,
device="cuda" if torch.cuda.is_available() else "cpu",
) -> None:
self.checkpoint_dir = checkpoint_dir
self.device = device
self.dtype = torch.bfloat16
model_id = "meta-llama/Llama-Guard-3-8B"
model_dir = os.path.join(self.checkpoint_dir, model_id)
self.model = AutoModelForCausalLM.from_pretrained(model_dir)
self.tokenizer = AutoTokenizer.from_pretrained(model_dir)
self.model.to(self.device, dtype=self.dtype).eval()
def get_llamaGuard3_block_message(self, moderation_output: str) -> str:
"""Extract the blocked category from the Llama Guard 3 model output."""
block_msg = "Prompt blocked by Llama Guard 3."
try:
lines = moderation_output.splitlines()
categories_detected = []
for line in lines[1:]:
line_stripped = line.split("<|eot_id|>")[0].strip()
for catagory in line_stripped.split(","):
catagory = catagory.strip()
if catagory not in UNSAFE_CATEGORIES:
log.warning(f"Unrecognized category from moderation output: {catagory}")
else:
categories_detected.append(catagory)
if len(categories_detected) > 0:
blocked_catagories = ", ".join([UNSAFE_CATEGORIES[catagory][:-1] for catagory in categories_detected])
block_msg = f"{block_msg} Violations: {blocked_catagories}."
except Exception as e:
log.warning(f"Unable to extract blocked category from Llama Guard 3 output: {e}")
return block_msg
def filter_llamaGuard3_output(self, prompt: str) -> tuple[bool, str]:
"""Filter the Llama Guard 3 model output and return the safety status and message."""
conversation = [{"role": "user", "content": prompt}]
input_ids = self.tokenizer.apply_chat_template(
conversation, categories=UNSAFE_CATEGORIES, return_tensors="pt"
).to("cuda")
prompt_len = input_ids.shape[1]
output = self.model.generate(
input_ids=input_ids,
max_new_tokens=100,
return_dict_in_generate=True,
pad_token_id=0,
)
generated_tokens = output.sequences[:, prompt_len:]
moderation_output = self.tokenizer.decode(generated_tokens[0], skip_special_tokens=False).strip()
if "unsafe" in moderation_output.lower():
block_msg = self.get_llamaGuard3_block_message(moderation_output)
return False, block_msg
else:
return True, ""
def is_safe(self, prompt: str) -> tuple[bool, str]:
"""Check if the input prompt is safe according to the Llama Guard 3 model."""
try:
return self.filter_llamaGuard3_output(prompt)
except Exception as e:
log.error(f"Unexpected error occurred when running Llama Guard 3 guardrail: {e}")
return True, "Unexpected error occurred when running Llama Guard 3 guardrail."
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--prompt", type=str, required=True, help="Input prompt")
parser.add_argument(
"--checkpoint_dir",
type=str,
help="Path to the Llama Guard 3 checkpoint folder",
)
return parser.parse_args()
def main(args):
llamaGuard3 = LlamaGuard3(checkpoint_dir=args.checkpoint_dir)
runner = GuardrailRunner(safety_models=[llamaGuard3])
with misc.timer("Llama Guard 3 safety check"):
safety, message = runner.run_safety_check(args.prompt)
log.info(f"Input is: {'SAFE' if safety else 'UNSAFE'}")
log.info(f"Message: {message}") if not safety else None
if __name__ == "__main__":
args = parse_args()
main(args)