Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Dict, List, Optional | |
import attrs | |
import torch | |
from cosmos_predict1.diffusion.conditioner import BaseConditionEntry, TextAttr, VideoConditioner, VideoExtendConditioner | |
from cosmos_predict1.utils.lazy_config import LazyCall as L | |
from cosmos_predict1.utils.lazy_config import LazyDict | |
class TextConfig: | |
obj: LazyDict = L(TextAttr)() # No arguments | |
dropout_rate: float = 0.2 | |
input_keys: List[str] = attrs.field(factory=lambda: ["t5_text_embeddings", "t5_text_mask"]) | |
class BooleanFlag(BaseConditionEntry): | |
def __init__(self, output_key: Optional[str] = None): | |
super().__init__() | |
self.output_key = output_key | |
def forward(self, *args, **kwargs) -> Dict[str, torch.Tensor]: | |
del args, kwargs | |
key = self.output_key if self.output_key else self.input_key | |
return {key: self.flag} | |
def random_dropout_input( | |
self, in_tensor: torch.Tensor, dropout_rate: Optional[float] = None, key: Optional[str] = None | |
) -> torch.Tensor: | |
del key | |
dropout_rate = dropout_rate if dropout_rate is not None else self.dropout_rate | |
self.flag = torch.bernoulli((1.0 - dropout_rate) * torch.ones(1)).bool().to(device=in_tensor.device) | |
return in_tensor | |
class ReMapkey(BaseConditionEntry): | |
def __init__(self, output_key: Optional[str] = None, dtype: Optional[str] = None): | |
super().__init__() | |
self.output_key = output_key | |
self.dtype = { | |
None: None, | |
"float": torch.float32, | |
"bfloat16": torch.bfloat16, | |
"half": torch.float16, | |
"float16": torch.float16, | |
"int": torch.int32, | |
"long": torch.int64, | |
}[dtype] | |
def forward(self, element: torch.Tensor) -> Dict[str, torch.Tensor]: | |
key = self.output_key if self.output_key else self.input_key | |
if isinstance(element, torch.Tensor): | |
element = element.to(dtype=self.dtype) | |
return {key: element} | |
class FrameRepeatAttr(BaseConditionEntry): | |
def __init__(self): | |
super().__init__() | |
def forward(self, frame_repeat: torch.Tensor) -> Dict[str, torch.Tensor]: | |
return { | |
"frame_repeat": frame_repeat / 10.0, | |
} | |
class FPSConfig: | |
""" | |
Remap the key from the input dictionary to the output dictionary. For `fps`. | |
""" | |
obj: LazyDict = L(ReMapkey)(output_key="fps", dtype=None) | |
dropout_rate: float = 0.0 | |
input_key: str = "fps" | |
class PaddingMaskConfig: | |
""" | |
Remap the key from the input dictionary to the output dictionary. For `padding_mask`. | |
""" | |
obj: LazyDict = L(ReMapkey)(output_key="padding_mask", dtype=None) | |
dropout_rate: float = 0.0 | |
input_key: str = "padding_mask" | |
class ImageSizeConfig: | |
""" | |
Remap the key from the input dictionary to the output dictionary. For `image_size`. | |
""" | |
obj: LazyDict = L(ReMapkey)(output_key="image_size", dtype=None) | |
dropout_rate: float = 0.0 | |
input_key: str = "image_size" | |
class NumFramesConfig: | |
""" | |
Remap the key from the input dictionary to the output dictionary. For `num_frames`. | |
""" | |
obj: LazyDict = L(ReMapkey)(output_key="num_frames", dtype=None) | |
dropout_rate: float = 0.0 | |
input_key: str = "num_frames" | |
class FrameRepeatConfig: | |
""" | |
Remap and process key from the input dictionary to the output dictionary. For `frame_repeat`. | |
""" | |
obj: LazyDict = L(FrameRepeatAttr)() | |
dropout_rate: float = 0.0 | |
input_key: str = "frame_repeat" | |
class VideoCondBoolConfig: | |
obj: LazyDict = L(BooleanFlag)(output_key="video_cond_bool") | |
dropout_rate: float = 0.2 | |
input_key: str = "fps" # This is a placeholder, we never use this value | |
# Config below are for long video generation only | |
compute_loss_for_condition_region: bool = False # Compute loss for condition region | |
# How to sample condition region during training. "first_random_n" set the first n frames to be condition region, n is random, "random" set the condition region to be random, | |
condition_location: str = "first_random_n" | |
random_conditon_rate: float = 0.5 # The rate to sample the condition region randomly | |
first_random_n_num_condition_t_max: int = 4 # The maximum number of frames to sample as condition region, used when condition_location is "first_random_n" | |
first_random_n_num_condition_t_min: int = 0 # The minimum number of frames to sample as condition region, used when condition_location is "first_random_n" | |
# How to dropout value of the conditional input frames | |
cfg_unconditional_type: str = "zero_condition_region_condition_mask" # Unconditional type. "zero_condition_region_condition_mask" set the input to zero for condition region, "noise_x_condition_region" set the input to x_t, same as the base model | |
# How to corrupt the condition region | |
apply_corruption_to_condition_region: str = "noise_with_sigma" # Apply corruption to condition region, option: "gaussian_blur", "noise_with_sigma", "clean" (inference), "noise_with_sigma_fixed" (inference) | |
# Inference only option: list of sigma value for the corruption at different chunk id, used when apply_corruption_to_condition_region is "noise_with_sigma" or "noise_with_sigma_fixed" | |
apply_corruption_to_condition_region_sigma_value: list[float] = [0.001, 0.2] + [ | |
0.5 | |
] * 10 # Sigma value for the corruption, used when apply_corruption_to_condition_region is "noise_with_sigma_fixed" | |
# Add augment_sigma condition to the network | |
condition_on_augment_sigma: bool = False | |
# The following arguments is to match with previous implementation where we use train sde to sample augment sigma (with adjust video noise turn on) | |
augment_sigma_sample_p_mean: float = 0.0 # Mean of the augment sigma | |
augment_sigma_sample_p_std: float = 1.0 # Std of the augment sigma | |
augment_sigma_sample_multiplier: float = 4.0 # Multipler of augment sigma | |
# Add pose condition to the network | |
add_pose_condition: bool = False | |
# Sample PPP... from IPPP... sequence | |
sample_tokens_start_from_p_or_i: bool = False | |
# Normalize the input condition latent | |
normalize_condition_latent: bool = False | |
class LatentConditionConfig: | |
""" | |
Remap the key from the input dictionary to the output dictionary. For `latent condition`. | |
""" | |
obj: LazyDict = L(ReMapkey)(output_key="latent_condition", dtype=None) | |
dropout_rate: float = 0.0 | |
input_key: str = "latent_condition" | |
class LatentConditionSigmaConfig: | |
""" | |
Remap the key from the input dictionary to the output dictionary. For `latent condition`. | |
""" | |
obj: LazyDict = L(ReMapkey)(output_key="latent_condition_sigma", dtype=None) | |
dropout_rate: float = 0.0 | |
input_key: str = "latent_condition_sigma" | |
BaseVideoConditionerConfig: LazyDict = L(VideoConditioner)( | |
text=TextConfig(), | |
) | |
VideoConditionerFpsSizePaddingConfig: LazyDict = L(VideoConditioner)( | |
text=TextConfig(), | |
fps=FPSConfig(), | |
num_frames=NumFramesConfig(), | |
image_size=ImageSizeConfig(), | |
padding_mask=PaddingMaskConfig(), | |
) | |
VideoExtendConditionerConfig: LazyDict = L(VideoExtendConditioner)( | |
text=TextConfig(), | |
fps=FPSConfig(), | |
num_frames=NumFramesConfig(), | |
image_size=ImageSizeConfig(), | |
padding_mask=PaddingMaskConfig(), | |
video_cond_bool=VideoCondBoolConfig(), | |
) | |
VideoConditionerFpsSizePaddingFrameRepeatConfig: LazyDict = L(VideoConditioner)( | |
text=TextConfig(), | |
fps=FPSConfig(), | |
num_frames=NumFramesConfig(), | |
image_size=ImageSizeConfig(), | |
padding_mask=PaddingMaskConfig(), | |
frame_repeat=FrameRepeatConfig(), | |
) | |
VideoExtendConditionerFrameRepeatConfig: LazyDict = L(VideoExtendConditioner)( | |
text=TextConfig(), | |
fps=FPSConfig(), | |
num_frames=NumFramesConfig(), | |
image_size=ImageSizeConfig(), | |
padding_mask=PaddingMaskConfig(), | |
video_cond_bool=VideoCondBoolConfig(), | |
frame_repeat=FrameRepeatConfig(), | |
) | |