roll-ai's picture
Upload 381 files
b6af722 verified
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, List, Optional
import attrs
import torch
from cosmos_predict1.diffusion.conditioner import BaseConditionEntry, TextAttr, VideoConditioner, VideoExtendConditioner
from cosmos_predict1.utils.lazy_config import LazyCall as L
from cosmos_predict1.utils.lazy_config import LazyDict
@attrs.define(slots=False)
class TextConfig:
obj: LazyDict = L(TextAttr)() # No arguments
dropout_rate: float = 0.2
input_keys: List[str] = attrs.field(factory=lambda: ["t5_text_embeddings", "t5_text_mask"])
class BooleanFlag(BaseConditionEntry):
def __init__(self, output_key: Optional[str] = None):
super().__init__()
self.output_key = output_key
def forward(self, *args, **kwargs) -> Dict[str, torch.Tensor]:
del args, kwargs
key = self.output_key if self.output_key else self.input_key
return {key: self.flag}
def random_dropout_input(
self, in_tensor: torch.Tensor, dropout_rate: Optional[float] = None, key: Optional[str] = None
) -> torch.Tensor:
del key
dropout_rate = dropout_rate if dropout_rate is not None else self.dropout_rate
self.flag = torch.bernoulli((1.0 - dropout_rate) * torch.ones(1)).bool().to(device=in_tensor.device)
return in_tensor
class ReMapkey(BaseConditionEntry):
def __init__(self, output_key: Optional[str] = None, dtype: Optional[str] = None):
super().__init__()
self.output_key = output_key
self.dtype = {
None: None,
"float": torch.float32,
"bfloat16": torch.bfloat16,
"half": torch.float16,
"float16": torch.float16,
"int": torch.int32,
"long": torch.int64,
}[dtype]
def forward(self, element: torch.Tensor) -> Dict[str, torch.Tensor]:
key = self.output_key if self.output_key else self.input_key
if isinstance(element, torch.Tensor):
element = element.to(dtype=self.dtype)
return {key: element}
class FrameRepeatAttr(BaseConditionEntry):
def __init__(self):
super().__init__()
def forward(self, frame_repeat: torch.Tensor) -> Dict[str, torch.Tensor]:
return {
"frame_repeat": frame_repeat / 10.0,
}
@attrs.define(slots=False)
class FPSConfig:
"""
Remap the key from the input dictionary to the output dictionary. For `fps`.
"""
obj: LazyDict = L(ReMapkey)(output_key="fps", dtype=None)
dropout_rate: float = 0.0
input_key: str = "fps"
@attrs.define(slots=False)
class PaddingMaskConfig:
"""
Remap the key from the input dictionary to the output dictionary. For `padding_mask`.
"""
obj: LazyDict = L(ReMapkey)(output_key="padding_mask", dtype=None)
dropout_rate: float = 0.0
input_key: str = "padding_mask"
@attrs.define(slots=False)
class ImageSizeConfig:
"""
Remap the key from the input dictionary to the output dictionary. For `image_size`.
"""
obj: LazyDict = L(ReMapkey)(output_key="image_size", dtype=None)
dropout_rate: float = 0.0
input_key: str = "image_size"
@attrs.define(slots=False)
class NumFramesConfig:
"""
Remap the key from the input dictionary to the output dictionary. For `num_frames`.
"""
obj: LazyDict = L(ReMapkey)(output_key="num_frames", dtype=None)
dropout_rate: float = 0.0
input_key: str = "num_frames"
@attrs.define(slots=False)
class FrameRepeatConfig:
"""
Remap and process key from the input dictionary to the output dictionary. For `frame_repeat`.
"""
obj: LazyDict = L(FrameRepeatAttr)()
dropout_rate: float = 0.0
input_key: str = "frame_repeat"
@attrs.define(slots=False)
class VideoCondBoolConfig:
obj: LazyDict = L(BooleanFlag)(output_key="video_cond_bool")
dropout_rate: float = 0.2
input_key: str = "fps" # This is a placeholder, we never use this value
# Config below are for long video generation only
compute_loss_for_condition_region: bool = False # Compute loss for condition region
# How to sample condition region during training. "first_random_n" set the first n frames to be condition region, n is random, "random" set the condition region to be random,
condition_location: str = "first_random_n"
random_conditon_rate: float = 0.5 # The rate to sample the condition region randomly
first_random_n_num_condition_t_max: int = 4 # The maximum number of frames to sample as condition region, used when condition_location is "first_random_n"
first_random_n_num_condition_t_min: int = 0 # The minimum number of frames to sample as condition region, used when condition_location is "first_random_n"
# How to dropout value of the conditional input frames
cfg_unconditional_type: str = "zero_condition_region_condition_mask" # Unconditional type. "zero_condition_region_condition_mask" set the input to zero for condition region, "noise_x_condition_region" set the input to x_t, same as the base model
# How to corrupt the condition region
apply_corruption_to_condition_region: str = "noise_with_sigma" # Apply corruption to condition region, option: "gaussian_blur", "noise_with_sigma", "clean" (inference), "noise_with_sigma_fixed" (inference)
# Inference only option: list of sigma value for the corruption at different chunk id, used when apply_corruption_to_condition_region is "noise_with_sigma" or "noise_with_sigma_fixed"
apply_corruption_to_condition_region_sigma_value: list[float] = [0.001, 0.2] + [
0.5
] * 10 # Sigma value for the corruption, used when apply_corruption_to_condition_region is "noise_with_sigma_fixed"
# Add augment_sigma condition to the network
condition_on_augment_sigma: bool = False
# The following arguments is to match with previous implementation where we use train sde to sample augment sigma (with adjust video noise turn on)
augment_sigma_sample_p_mean: float = 0.0 # Mean of the augment sigma
augment_sigma_sample_p_std: float = 1.0 # Std of the augment sigma
augment_sigma_sample_multiplier: float = 4.0 # Multipler of augment sigma
# Add pose condition to the network
add_pose_condition: bool = False
# Sample PPP... from IPPP... sequence
sample_tokens_start_from_p_or_i: bool = False
# Normalize the input condition latent
normalize_condition_latent: bool = False
@attrs.define(slots=False)
class LatentConditionConfig:
"""
Remap the key from the input dictionary to the output dictionary. For `latent condition`.
"""
obj: LazyDict = L(ReMapkey)(output_key="latent_condition", dtype=None)
dropout_rate: float = 0.0
input_key: str = "latent_condition"
@attrs.define(slots=False)
class LatentConditionSigmaConfig:
"""
Remap the key from the input dictionary to the output dictionary. For `latent condition`.
"""
obj: LazyDict = L(ReMapkey)(output_key="latent_condition_sigma", dtype=None)
dropout_rate: float = 0.0
input_key: str = "latent_condition_sigma"
BaseVideoConditionerConfig: LazyDict = L(VideoConditioner)(
text=TextConfig(),
)
VideoConditionerFpsSizePaddingConfig: LazyDict = L(VideoConditioner)(
text=TextConfig(),
fps=FPSConfig(),
num_frames=NumFramesConfig(),
image_size=ImageSizeConfig(),
padding_mask=PaddingMaskConfig(),
)
VideoExtendConditionerConfig: LazyDict = L(VideoExtendConditioner)(
text=TextConfig(),
fps=FPSConfig(),
num_frames=NumFramesConfig(),
image_size=ImageSizeConfig(),
padding_mask=PaddingMaskConfig(),
video_cond_bool=VideoCondBoolConfig(),
)
VideoConditionerFpsSizePaddingFrameRepeatConfig: LazyDict = L(VideoConditioner)(
text=TextConfig(),
fps=FPSConfig(),
num_frames=NumFramesConfig(),
image_size=ImageSizeConfig(),
padding_mask=PaddingMaskConfig(),
frame_repeat=FrameRepeatConfig(),
)
VideoExtendConditionerFrameRepeatConfig: LazyDict = L(VideoExtendConditioner)(
text=TextConfig(),
fps=FPSConfig(),
num_frames=NumFramesConfig(),
image_size=ImageSizeConfig(),
padding_mask=PaddingMaskConfig(),
video_cond_bool=VideoCondBoolConfig(),
frame_repeat=FrameRepeatConfig(),
)