Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from hydra.core.config_store import ConfigStore | |
from cosmos_predict1.diffusion.networks.general_dit_video_conditioned import VideoExtendGeneralDIT | |
from cosmos_predict1.diffusion.training.utils.peft.lora_config import get_fa_ca_qv_lora_config | |
from cosmos_predict1.utils.lazy_config import LazyCall as L | |
from cosmos_predict1.utils.lazy_config import LazyDict | |
Cosmos_Predict1_Video2World_7B: LazyDict = LazyDict( | |
dict( | |
defaults=[ | |
{"override /net": "faditv2_7b"}, | |
{"override /conditioner": "video_cond"}, | |
{"override /tokenizer": "cosmos_diffusion_tokenizer_res720_comp8x8x8_t121_ver092624"}, | |
"_self_", | |
], | |
model=dict( | |
latent_shape=[ | |
16, | |
16, | |
88, | |
160, | |
], | |
conditioner=dict(video_cond_bool=dict()), | |
net=L(VideoExtendGeneralDIT)( | |
rope_h_extrapolation_ratio=1.0, | |
rope_w_extrapolation_ratio=1.0, | |
rope_t_extrapolation_ratio=2.0, | |
), | |
), | |
job=dict(group="Video2World", name="Cosmos_Predict1_Video2World_7B"), | |
) | |
) | |
Cosmos_Predict1_Video2World_14B: LazyDict = LazyDict( | |
dict( | |
defaults=[ | |
{"override /net": "faditv2_14b"}, | |
{"override /conditioner": "video_cond"}, | |
{"override /tokenizer": "cosmos_diffusion_tokenizer_res720_comp8x8x8_t121_ver092624"}, | |
"_self_", | |
], | |
model=dict( | |
latent_shape=[ | |
16, | |
16, | |
88, | |
160, | |
], | |
conditioner=dict(video_cond_bool=dict()), | |
net=L(VideoExtendGeneralDIT)( | |
rope_h_extrapolation_ratio=2.0, | |
rope_t_extrapolation_ratio=2.0, | |
rope_w_extrapolation_ratio=2.0, | |
extra_h_extrapolation_ratio=2.0, | |
extra_t_extrapolation_ratio=2.0, | |
extra_w_extrapolation_ratio=2.0, | |
), | |
), | |
job=dict(group="Video2World", name="Cosmos_Predict1_Video2World_14B"), | |
) | |
) | |
Cosmos_Predict1_Video2World_7B_Post_trained: LazyDict = LazyDict( | |
dict( | |
defaults=[ | |
"/experiment/Cosmos_Predict1_Video2World_7B", | |
], | |
job=dict( | |
name="Cosmos_Predict1_Video2World_7B_Post_trained", | |
), | |
) | |
) | |
Cosmos_Predict1_Video2World_7B_Post_trained_4gpu_80gb: LazyDict = LazyDict( | |
dict( | |
defaults=[ | |
"/experiment/Cosmos_Predict1_Video2World_7B", | |
], | |
job=dict( | |
name="Cosmos_Predict1_Video2World_7B_Post_trained_4gpu_80gb", | |
), | |
model=dict( | |
latent_shape=[ | |
16, # Latent channel dim | |
16, # Latent temporal dim | |
48, # Latent height dim | |
48, # Latent width dim | |
], | |
tokenizer=dict( | |
video_vae=dict(pixel_chunk_duration=121, spatial_resolution="384"), | |
), | |
), | |
) | |
) | |
Cosmos_Predict1_Video2World_7B_Post_trained_8gpu_40gb: LazyDict = LazyDict( | |
dict( | |
defaults=[ | |
"/experiment/Cosmos_Predict1_Video2World_7B", | |
], | |
job=dict( | |
name="Cosmos_Predict1_Video2World_7B_Post_trained_8gpu_40gb", | |
), | |
model=dict( | |
latent_shape=[ | |
16, # Latent channel dim | |
16, # Latent temporal dim | |
48, # Latent height dim | |
48, # Latent width dim | |
], | |
tokenizer=dict( | |
video_vae=dict(pixel_chunk_duration=25, spatial_resolution="384"), | |
), | |
), | |
) | |
) | |
Cosmos_Predict1_Video2World_7B_Post_trained_4gpu_40gb: LazyDict = LazyDict( | |
dict( | |
defaults=[ | |
"/experiment/Cosmos_Predict1_Video2World_7B", | |
], | |
job=dict( | |
name="Cosmos_Predict1_Video2World_7B_Post_trained_4gpu_40gb", | |
), | |
model=dict( | |
latent_shape=[ | |
16, # Latent channel dim | |
16, # Latent temporal dim | |
24, # Latent height dim | |
24, # Latent width dim | |
], | |
tokenizer=dict( | |
# video_vae=dict(pixel_chunk_duration=17, spatial_resolution="384"), | |
video_vae=dict(pixel_chunk_duration=25, spatial_resolution="384"), | |
), | |
), | |
) | |
) | |
Cosmos_Predict1_Video2World_14B_Post_trained: LazyDict = LazyDict( | |
dict( | |
defaults=[ | |
"/experiment/Cosmos_Predict1_Video2World_14B", | |
], | |
job=dict( | |
name="Cosmos_Predict1_Video2World_14B_Post_trained", | |
), | |
) | |
) | |
Cosmos_Predict1_Video2World_7B_Post_trained_lora: LazyDict = LazyDict( | |
dict( | |
defaults=[ | |
"/experiment/Cosmos_Predict1_Video2World_7B_Post_trained", | |
], | |
job=dict( | |
name="Cosmos_Predict1_Video2World_7B_Post_trained_lora", | |
), | |
model=dict( | |
peft_control=get_fa_ca_qv_lora_config(first_nblocks=27, rank=8, scale=1), | |
), | |
) | |
) | |
cs = ConfigStore.instance() | |
for _item in [ | |
Cosmos_Predict1_Video2World_7B, | |
Cosmos_Predict1_Video2World_14B, | |
Cosmos_Predict1_Video2World_7B_Post_trained, | |
Cosmos_Predict1_Video2World_14B_Post_trained, | |
Cosmos_Predict1_Video2World_7B_Post_trained_4gpu_80gb, | |
Cosmos_Predict1_Video2World_7B_Post_trained_8gpu_40gb, | |
Cosmos_Predict1_Video2World_7B_Post_trained_4gpu_40gb, | |
Cosmos_Predict1_Video2World_7B_Post_trained_lora, | |
]: | |
cs.store(group="experiment", package="_global_", name=_item["job"]["name"], node=_item) | |