Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Optional, Union | |
import torch | |
from einops import rearrange | |
from torch import Tensor | |
from cosmos_predict1.diffusion.model.model_t2w import DiffusionT2WModel | |
from cosmos_predict1.diffusion.module.parallel import cat_outputs_cp, split_inputs_cp | |
from cosmos_predict1.utils import log, misc | |
class DiffusionMultiviewT2WModel(DiffusionT2WModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.n_views = config.net.n_views | |
def encode(self, state: torch.Tensor) -> torch.Tensor: | |
state = rearrange(state, "B C (V T) H W -> (B V) C T H W", V=self.n_views) | |
encoded_state = self.tokenizer.encode(state) | |
encoded_state = rearrange(encoded_state, "(B V) C T H W -> B C (V T) H W", V=self.n_views) * self.sigma_data | |
return encoded_state | |
def decode(self, latent: torch.Tensor) -> torch.Tensor: | |
latent = rearrange(latent, "B C (V T) H W -> (B V) C T H W", V=self.n_views) | |
decoded_state = self.tokenizer.decode(latent / self.sigma_data) | |
decoded_state = rearrange(decoded_state, "(B V) C T H W -> B C (V T) H W", V=self.n_views) | |
return decoded_state | |
def generate_samples_from_batch( | |
self, | |
data_batch: dict, | |
guidance: float = 1.5, | |
seed: int = 1, | |
state_shape: tuple | None = None, | |
n_sample: int | None = 1, | |
is_negative_prompt: bool = False, | |
num_steps: int = 35, | |
) -> Tensor: | |
"""Generate samples from a data batch using diffusion sampling. | |
This function generates samples from either image or video data batches using diffusion sampling. | |
It handles both conditional and unconditional generation with classifier-free guidance. | |
Args: | |
data_batch (dict): Raw data batch from the training data loader | |
guidance (float, optional): Classifier-free guidance weight. Defaults to 1.5. | |
seed (int, optional): Random seed for reproducibility. Defaults to 1. | |
state_shape (tuple | None, optional): Shape of the state tensor. Uses self.state_shape if None. Defaults to None. | |
n_sample (int | None, optional): Number of samples to generate. Defaults to 1. | |
is_negative_prompt (bool, optional): Whether to use negative prompt for unconditional generation. Defaults to False. | |
num_steps (int, optional): Number of diffusion sampling steps. Defaults to 35. | |
Returns: | |
Tensor: Generated samples after diffusion sampling | |
""" | |
condition, uncondition = self._get_conditions(data_batch, is_negative_prompt) | |
self.scheduler.set_timesteps(num_steps) | |
xt = torch.randn(size=(n_sample,) + tuple(state_shape)) * self.scheduler.init_noise_sigma | |
to_cp = self.net.is_context_parallel_enabled | |
if to_cp: | |
xt = rearrange(xt, "B C (V T) H W -> (B V) C T H W", V=self.n_views) | |
xt = split_inputs_cp(x=xt, seq_dim=2, cp_group=self.net.cp_group) | |
xt = rearrange(xt, "(B V) C T H W -> B C (V T) H W", V=self.n_views) | |
for t in self.scheduler.timesteps: | |
xt = xt.to(**self.tensor_kwargs) | |
xt_scaled = self.scheduler.scale_model_input(xt, timestep=t) | |
# Predict the noise residual | |
t = t.to(**self.tensor_kwargs) | |
net_output_cond = self.net(x=xt_scaled, timesteps=t, **condition.to_dict()) | |
net_output_uncond = self.net(x=xt_scaled, timesteps=t, **uncondition.to_dict()) | |
net_output = net_output_cond + guidance * (net_output_cond - net_output_uncond) | |
# Compute the previous noisy sample x_t -> x_t-1 | |
xt = self.scheduler.step(net_output, t, xt).prev_sample | |
samples = xt | |
if to_cp: | |
samples = rearrange(samples, "B C (V T) H W -> (B V) C T H W", V=self.n_views) | |
samples = cat_outputs_cp(samples, seq_dim=2, cp_group=self.net.cp_group) | |
samples = rearrange(samples, "(B V) C T H W -> B C (V T) H W", V=self.n_views) | |
return samples | |