Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
from typing import Any, Callable, Dict, List, Mapping, Optional, Tuple, Union | |
import amp_C | |
import torch | |
from apex.multi_tensor_apply import multi_tensor_applier | |
from einops import rearrange | |
from megatron.core import parallel_state | |
from torch import Tensor | |
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors | |
from torch.distributed import broadcast_object_list, get_process_group_ranks | |
from torch.distributed.utils import _verify_param_shape_across_processes | |
from cosmos_predict1.diffusion.modules.res_sampler import COMMON_SOLVER_OPTIONS | |
from cosmos_predict1.diffusion.training.conditioner import BaseVideoCondition, DataType | |
from cosmos_predict1.diffusion.training.context_parallel import cat_outputs_cp, split_inputs_cp | |
from cosmos_predict1.diffusion.training.models.model_image import CosmosCondition | |
from cosmos_predict1.diffusion.training.models.model_image import DiffusionModel as ImageModel | |
from cosmos_predict1.diffusion.training.models.model_image import diffusion_fsdp_class_decorator | |
from cosmos_predict1.utils import distributed, log, misc | |
l2_norm_impl = amp_C.multi_tensor_l2norm | |
multi_tensor_scale_impl = amp_C.multi_tensor_scale | |
# key to check if the video data is normalized or image data is converted to video data | |
# to avoid apply normalization or augment image dimension multiple times | |
# It is due to we do not have normalization and augment image dimension in the dataloader and move it to the model | |
IS_PREPROCESSED_KEY = "is_preprocessed" | |
def robust_broadcast(tensor: torch.Tensor, src: int, pg, is_check_shape: bool = False) -> torch.Tensor: | |
""" | |
Perform a robust broadcast operation that works regardless of tensor shapes on different ranks. | |
Args: | |
tensor (torch.Tensor): The tensor to broadcast (on src rank) or receive (on other ranks). | |
src (int): The source rank for the broadcast. Defaults to 0. | |
Returns: | |
torch.Tensor: The broadcasted tensor on all ranks. | |
""" | |
# First, broadcast the shape of the tensor | |
if distributed.get_rank() == src: | |
shape = torch.tensor(tensor.shape).cuda() | |
else: | |
shape = torch.empty(tensor.dim(), dtype=torch.long).cuda() | |
if is_check_shape: | |
_verify_param_shape_across_processes(pg, [shape]) | |
torch.distributed.broadcast(shape, src, group=pg) | |
# Resize the tensor on non-src ranks if necessary | |
if distributed.get_rank() != src: | |
tensor = tensor.new_empty(shape.tolist()).type_as(tensor) | |
# Now broadcast the tensor data | |
torch.distributed.broadcast(tensor, src, group=pg) | |
return tensor | |
def _broadcast(item: torch.Tensor | str | None, to_tp: bool = True, to_cp: bool = True) -> torch.Tensor | str | None: | |
""" | |
Broadcast the item from the minimum rank in the specified group(s). | |
Since global rank = tp_rank + cp_rank * tp_size + ... | |
First broadcast in the tp_group and then in the cp_group will | |
ensure that the item is broadcasted across ranks in cp_group and tp_group. | |
Parameters: | |
- item: The item to broadcast (can be a torch.Tensor, str, or None). | |
- to_tp: Whether to broadcast to the tensor model parallel group. | |
- to_cp: Whether to broadcast to the context parallel group. | |
""" | |
if not parallel_state.is_initialized(): | |
return item | |
tp_group = parallel_state.get_tensor_model_parallel_group() | |
cp_group = parallel_state.get_context_parallel_group() | |
to_tp = to_tp and parallel_state.get_tensor_model_parallel_world_size() > 1 | |
to_cp = to_cp and parallel_state.get_context_parallel_world_size() > 1 | |
if to_tp: | |
min_tp_rank = min(get_process_group_ranks(tp_group)) | |
if to_cp: | |
min_cp_rank = min(get_process_group_ranks(cp_group)) | |
if isinstance(item, torch.Tensor): # assume the device is cuda | |
# log.info(f"{item.shape}", rank0_only=False) | |
if to_tp: | |
# torch.distributed.broadcast(item, min_tp_rank, group=tp_group) | |
item = robust_broadcast(item, min_tp_rank, tp_group) | |
if to_cp: | |
# torch.distributed.broadcast(item, min_cp_rank, group=cp_group) | |
item = robust_broadcast(item, min_cp_rank, cp_group) | |
elif item is not None: | |
broadcastable_list = [item] | |
if to_tp: | |
# log.info(f"{broadcastable_list}", rank0_only=False) | |
broadcast_object_list(broadcastable_list, min_tp_rank, group=tp_group) | |
if to_cp: | |
broadcast_object_list(broadcastable_list, min_cp_rank, group=cp_group) | |
item = broadcastable_list[0] | |
return item | |
def broadcast_condition(condition: BaseVideoCondition, to_tp: bool = True, to_cp: bool = True) -> BaseVideoCondition: | |
condition_kwargs = {} | |
for k, v in condition.to_dict().items(): | |
if isinstance(v, torch.Tensor): | |
assert not v.requires_grad, f"{k} requires gradient. the current impl does not support it" | |
condition_kwargs[k] = _broadcast(v, to_tp=to_tp, to_cp=to_cp) | |
condition = type(condition)(**condition_kwargs) | |
return condition | |
class DiffusionModel(ImageModel): | |
def __init__(self, config): | |
super().__init__(config) | |
# Initialize trained_data_record with defaultdict, key: image, video, iteration | |
self.trained_data_record = { | |
"image": 0, | |
"video": 0, | |
"iteration": 0, | |
} | |
if parallel_state.is_initialized(): | |
self.data_parallel_size = parallel_state.get_data_parallel_world_size() | |
else: | |
self.data_parallel_size = 1 | |
if self.config.adjust_video_noise: | |
self.video_noise_multiplier = math.sqrt(self.state_shape[1]) | |
else: | |
self.video_noise_multiplier = 1.0 | |
def setup_data_key(self) -> None: | |
self.input_data_key = self.config.input_data_key # by default it is video key for Video diffusion model | |
self.input_image_key = self.config.input_image_key | |
def is_image_batch(self, data_batch: dict[str, Tensor]) -> bool: | |
"""We hanlde two types of data_batch. One comes from a joint_dataloader where "dataset_name" can be used to differenciate image_batch and video_batch. | |
Another comes from a dataloader which we by default assumes as video_data for video model training. | |
""" | |
is_image = self.input_image_key in data_batch | |
is_video = self.input_data_key in data_batch | |
assert ( | |
is_image != is_video | |
), "Only one of the input_image_key or input_data_key should be present in the data_batch." | |
return is_image | |
def draw_training_sigma_and_epsilon(self, size: int, condition: BaseVideoCondition) -> Tensor: | |
sigma_B, epsilon = super().draw_training_sigma_and_epsilon(size, condition) | |
is_video_batch = condition.data_type == DataType.VIDEO | |
multiplier = self.video_noise_multiplier if is_video_batch else 1 | |
sigma_B = _broadcast(sigma_B * multiplier, to_tp=True, to_cp=is_video_batch) | |
epsilon = _broadcast(epsilon, to_tp=True, to_cp=is_video_batch) | |
return sigma_B, epsilon | |
def validation_step( | |
self, data: dict[str, torch.Tensor], iteration: int | |
) -> tuple[dict[str, torch.Tensor], torch.Tensor]: | |
""" | |
save generated videos | |
""" | |
raw_data, x0, condition = self.get_data_and_condition(data) | |
guidance = data["guidance"] | |
data = misc.to(data, **self.tensor_kwargs) | |
sample = self.generate_samples_from_batch( | |
data, | |
guidance=guidance, | |
# make sure no mismatch and also works for cp | |
state_shape=x0.shape[1:], | |
n_sample=x0.shape[0], | |
) | |
sample = self.decode(sample) | |
gt = raw_data | |
caption = data["ai_caption"] | |
return {"gt": gt, "result": sample, "caption": caption}, torch.tensor([0]).to(**self.tensor_kwargs) | |
def training_step(self, data_batch: Dict[str, Tensor], iteration: int) -> Tuple[Dict[str, Tensor] | Tensor]: | |
input_key = self.input_data_key # by default it is video key | |
if self.is_image_batch(data_batch): | |
input_key = self.input_image_key | |
batch_size = data_batch[input_key].shape[0] | |
self.trained_data_record["image" if self.is_image_batch(data_batch) else "video"] += ( | |
batch_size * self.data_parallel_size | |
) | |
self.trained_data_record["iteration"] += 1 | |
return super().training_step(data_batch, iteration) | |
def state_dict(self) -> Dict[str, Any]: | |
state_dict = super().state_dict() | |
state_dict["trained_data_record"] = self.trained_data_record | |
return state_dict | |
def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True, assign: bool = False): | |
if "trained_data_record" in state_dict and hasattr(self, "trained_data_record"): | |
trained_data_record = state_dict.pop("trained_data_record") | |
if trained_data_record: | |
assert set(trained_data_record.keys()) == set(self.trained_data_record.keys()) | |
for k, v in trained_data_record.items(): | |
self.trained_data_record[k] = v | |
else: | |
log.warning("trained_data_record not found in the state_dict.") | |
return super().load_state_dict(state_dict, strict, assign) | |
def _normalize_video_databatch_inplace(self, data_batch: dict[str, Tensor], input_key: str = None) -> None: | |
""" | |
Normalizes video data in-place on a CUDA device to reduce data loading overhead. | |
This function modifies the video data tensor within the provided data_batch dictionary | |
in-place, scaling the uint8 data from the range [0, 255] to the normalized range [-1, 1]. | |
Warning: | |
A warning is issued if the data has not been previously normalized. | |
Args: | |
data_batch (dict[str, Tensor]): A dictionary containing the video data under a specific key. | |
This tensor is expected to be on a CUDA device and have dtype of torch.uint8. | |
Side Effects: | |
Modifies the 'input_data_key' tensor within the 'data_batch' dictionary in-place. | |
Note: | |
This operation is performed directly on the CUDA device to avoid the overhead associated | |
with moving data to/from the GPU. Ensure that the tensor is already on the appropriate device | |
and has the correct dtype (torch.uint8) to avoid unexpected behaviors. | |
""" | |
input_key = self.input_data_key if input_key is None else input_key | |
# only handle video batch | |
if input_key in data_batch: | |
# Check if the data has already been normalized and avoid re-normalizing | |
if IS_PREPROCESSED_KEY in data_batch and data_batch[IS_PREPROCESSED_KEY] is True: | |
assert torch.is_floating_point(data_batch[input_key]), "Video data is not in float format." | |
assert torch.all( | |
(data_batch[input_key] >= -1.0001) & (data_batch[input_key] <= 1.0001) | |
), f"Video data is not in the range [-1, 1]. get data range [{data_batch[input_key].min()}, {data_batch[input_key].max()}]" | |
else: | |
assert data_batch[input_key].dtype == torch.uint8, "Video data is not in uint8 format." | |
data_batch[input_key] = data_batch[input_key].to(**self.tensor_kwargs) / 127.5 - 1.0 | |
data_batch[IS_PREPROCESSED_KEY] = True | |
def _augment_image_dim_inplace(self, data_batch: dict[str, Tensor], input_key: str = None) -> None: | |
input_key = self.input_image_key if input_key is None else input_key | |
if input_key in data_batch: | |
# Check if the data has already been augmented and avoid re-augmenting | |
if IS_PREPROCESSED_KEY in data_batch and data_batch[IS_PREPROCESSED_KEY] is True: | |
assert ( | |
data_batch[input_key].shape[2] == 1 | |
), f"Image data is claimed be augmented while its shape is {data_batch[input_key].shape}" | |
return | |
else: | |
data_batch[input_key] = rearrange(data_batch[input_key], "b c h w -> b c 1 h w").contiguous() | |
data_batch[IS_PREPROCESSED_KEY] = True | |
def get_data_and_condition(self, data_batch: dict[str, Tensor]) -> Tuple[Tensor, BaseVideoCondition]: | |
self._normalize_video_databatch_inplace(data_batch) | |
self._augment_image_dim_inplace(data_batch) | |
input_key = self.input_data_key # by default it is video key | |
is_image_batch = self.is_image_batch(data_batch) | |
is_video_batch = not is_image_batch | |
# Broadcast data and condition across TP and CP groups. | |
# sort keys to make sure the order is same, IMPORTANT! otherwise, nccl will hang! | |
local_keys = sorted(list(data_batch.keys())) | |
# log.critical(f"all keys {local_keys}", rank0_only=False) | |
for key in local_keys: | |
data_batch[key] = _broadcast(data_batch[key], to_tp=True, to_cp=is_video_batch) | |
if is_image_batch: | |
input_key = self.input_image_key | |
# Latent state | |
raw_state = data_batch[input_key] | |
latent_state = self.encode(raw_state).contiguous() | |
# Condition | |
condition = self.conditioner(data_batch) | |
if is_image_batch: | |
condition.data_type = DataType.IMAGE | |
else: | |
condition.data_type = DataType.VIDEO | |
# VAE has randomness. CP/TP group should have the same encoded output. | |
latent_state = _broadcast(latent_state, to_tp=True, to_cp=is_video_batch) | |
condition = broadcast_condition(condition, to_tp=True, to_cp=is_video_batch) | |
return raw_state, latent_state, condition | |
def on_train_start(self, memory_format: torch.memory_format = torch.preserve_format) -> None: | |
super().on_train_start(memory_format) | |
if parallel_state.is_initialized() and parallel_state.get_tensor_model_parallel_world_size() > 1: | |
sequence_parallel = getattr(parallel_state, "sequence_parallel", False) | |
if sequence_parallel: | |
self.net.enable_sequence_parallel() | |
def compute_loss_with_epsilon_and_sigma( | |
self, | |
data_batch: dict[str, torch.Tensor], | |
x0_from_data_batch: torch.Tensor, | |
x0: torch.Tensor, | |
condition: CosmosCondition, | |
epsilon: torch.Tensor, | |
sigma: torch.Tensor, | |
): | |
if self.is_image_batch(data_batch): | |
# Turn off CP | |
self.net.disable_context_parallel() | |
else: | |
if parallel_state.is_initialized(): | |
if parallel_state.get_context_parallel_world_size() > 1: | |
# Turn on CP | |
cp_group = parallel_state.get_context_parallel_group() | |
self.net.enable_context_parallel(cp_group) | |
log.debug("[CP] Split x0 and epsilon") | |
x0 = split_inputs_cp(x=x0, seq_dim=2, cp_group=self.net.cp_group) | |
epsilon = split_inputs_cp(x=epsilon, seq_dim=2, cp_group=self.net.cp_group) | |
output_batch, kendall_loss, pred_mse, edm_loss = super().compute_loss_with_epsilon_and_sigma( | |
data_batch, x0_from_data_batch, x0, condition, epsilon, sigma | |
) | |
if not self.is_image_batch(data_batch): | |
if self.loss_reduce == "sum" and parallel_state.get_context_parallel_world_size() > 1: | |
kendall_loss *= parallel_state.get_context_parallel_world_size() | |
return output_batch, kendall_loss, pred_mse, edm_loss | |
def get_x0_fn_from_batch( | |
self, | |
data_batch: Dict, | |
guidance: float = 1.5, | |
is_negative_prompt: bool = False, | |
) -> Callable: | |
""" | |
Generates a callable function `x0_fn` based on the provided data batch and guidance factor. | |
This function first processes the input data batch through a conditioning workflow (`conditioner`) to obtain conditioned and unconditioned states. It then defines a nested function `x0_fn` which applies a denoising operation on an input `noise_x` at a given noise level `sigma` using both the conditioned and unconditioned states. | |
Args: | |
- data_batch (Dict): A batch of data used for conditioning. The format and content of this dictionary should align with the expectations of the `self.conditioner` | |
- guidance (float, optional): A scalar value that modulates the influence of the conditioned state relative to the unconditioned state in the output. Defaults to 1.5. | |
- is_negative_prompt (bool): use negative prompt t5 in uncondition if true | |
Returns: | |
- Callable: A function `x0_fn(noise_x, sigma)` that takes two arguments, `noise_x` and `sigma`, and return x0 predictoin | |
The returned function is suitable for use in scenarios where a denoised state is required based on both conditioned and unconditioned inputs, with an adjustable level of guidance influence. | |
""" | |
if is_negative_prompt: | |
condition, uncondition = self.conditioner.get_condition_with_negative_prompt(data_batch) | |
else: | |
condition, uncondition = self.conditioner.get_condition_uncondition(data_batch) | |
to_cp = self.net.is_context_parallel_enabled | |
# For inference, check if parallel_state is initialized | |
if parallel_state.is_initialized(): | |
condition = broadcast_condition(condition, to_tp=True, to_cp=to_cp) | |
uncondition = broadcast_condition(uncondition, to_tp=True, to_cp=to_cp) | |
else: | |
assert not to_cp, "parallel_state is not initialized, context parallel should be turned off." | |
def x0_fn(noise_x: torch.Tensor, sigma: torch.Tensor) -> torch.Tensor: | |
cond_x0 = self.denoise(noise_x, sigma, condition).x0 | |
uncond_x0 = self.denoise(noise_x, sigma, uncondition).x0 | |
raw_x0 = cond_x0 + guidance * (cond_x0 - uncond_x0) | |
if "guided_image" in data_batch: | |
# replacement trick that enables inpainting with base model | |
assert "guided_mask" in data_batch, "guided_mask should be in data_batch if guided_image is present" | |
guide_image = data_batch["guided_image"] | |
guide_mask = data_batch["guided_mask"] | |
raw_x0 = guide_mask * guide_image + (1 - guide_mask) * raw_x0 | |
return raw_x0 | |
return x0_fn | |
def get_x_from_clean( | |
self, | |
in_clean_img: torch.Tensor, | |
sigma_max: float | None, | |
seed: int = 1, | |
) -> Tensor: | |
""" | |
in_clean_img (torch.Tensor): input clean image for image-to-image/video-to-video by adding noise then denoising | |
sigma_max (float): maximum sigma applied to in_clean_image for image-to-image/video-to-video | |
""" | |
if in_clean_img is None: | |
return None | |
generator = torch.Generator(device=self.tensor_kwargs["device"]) | |
generator.manual_seed(seed) | |
noise = torch.randn(*in_clean_img.shape, **self.tensor_kwargs, generator=generator) | |
if sigma_max is None: | |
sigma_max = self.sde.sigma_max | |
x_sigma_max = in_clean_img + noise * sigma_max | |
return x_sigma_max | |
def generate_samples_from_batch( | |
self, | |
data_batch: Dict, | |
guidance: float = 1.5, | |
seed: int = 1, | |
state_shape: Tuple | None = None, | |
n_sample: int | None = None, | |
is_negative_prompt: bool = False, | |
num_steps: int = 35, | |
solver_option: COMMON_SOLVER_OPTIONS = "2ab", | |
x_sigma_max: Optional[torch.Tensor] = None, | |
sigma_max: float | None = None, | |
return_noise: bool = False, | |
) -> Tensor | Tuple[Tensor, Tensor]: | |
""" | |
Generate samples from the batch. Based on given batch, it will automatically determine whether to generate image or video samples. | |
Args: | |
data_batch (dict): raw data batch draw from the training data loader. | |
iteration (int): Current iteration number. | |
guidance (float): guidance weights | |
seed (int): random seed | |
state_shape (tuple): shape of the state, default to self.state_shape if not provided | |
n_sample (int): number of samples to generate | |
is_negative_prompt (bool): use negative prompt t5 in uncondition if true | |
num_steps (int): number of steps for the diffusion process | |
solver_option (str): differential equation solver option, default to "2ab"~(mulitstep solver) | |
return_noise (bool): return the initial noise or not, used for ODE pairs generation | |
""" | |
self._normalize_video_databatch_inplace(data_batch) | |
self._augment_image_dim_inplace(data_batch) | |
is_image_batch = self.is_image_batch(data_batch) | |
if n_sample is None: | |
input_key = self.input_image_key if is_image_batch else self.input_data_key | |
n_sample = data_batch[input_key].shape[0] | |
if state_shape is None: | |
if is_image_batch: | |
state_shape = (self.state_shape[0], 1, *self.state_shape[2:]) # C,T,H,W | |
x0_fn = self.get_x0_fn_from_batch(data_batch, guidance, is_negative_prompt=is_negative_prompt) | |
x_sigma_max = ( | |
misc.arch_invariant_rand( | |
(n_sample,) + tuple(state_shape), | |
torch.float32, | |
self.tensor_kwargs["device"], | |
seed, | |
) | |
* self.sde.sigma_max | |
) | |
if self.net.is_context_parallel_enabled: | |
x_sigma_max = split_inputs_cp(x=x_sigma_max, seq_dim=2, cp_group=self.net.cp_group) | |
samples = self.sampler( | |
x0_fn, x_sigma_max, num_steps=num_steps, sigma_max=self.sde.sigma_max, solver_option=solver_option | |
) | |
if self.net.is_context_parallel_enabled: | |
samples = cat_outputs_cp(samples, seq_dim=2, cp_group=self.net.cp_group) | |
if return_noise: | |
if self.net.is_context_parallel_enabled: | |
x_sigma_max = cat_outputs_cp(x_sigma_max, seq_dim=2, cp_group=self.net.cp_group) | |
return samples, x_sigma_max / self.sde.sigma_max | |
return samples | |
def on_after_backward(self, iteration: int = 0): | |
finalize_model_grads([self]) | |
def get_grad_norm( | |
self, | |
norm_type: Union[int, float] = 2, | |
filter_fn: Callable[[str, torch.nn.Parameter], bool] | None = None, | |
) -> float: | |
"""Calculate the norm of gradients, handling model parallel parameters. | |
This function is adapted from torch.nn.utils.clip_grad.clip_grad_norm_ | |
with added functionality to handle model parallel parameters. | |
Args: | |
norm_type (float or int): Type of norm to use. Can be 2 for L2 norm. | |
'inf' for infinity norm is not supported. | |
filter_fn (callable, optional): Function to filter parameters for norm calculation. | |
Takes parameter name and parameter as input, returns True if this parameter is sharded else False. | |
Returns: | |
float: Total norm of the parameters (viewed as a single vector). | |
Note: | |
- Uses NVIDIA's multi-tensor applier for efficient norm calculation. | |
- Handles both model parallel and non-model parallel parameters separately. | |
- Currently only supports L2 norm (norm_type = 2). | |
""" | |
# Get model parallel group if parallel state is initialized | |
if parallel_state.is_initialized(): | |
model_parallel_group = parallel_state.get_model_parallel_group() | |
else: | |
model_parallel_group = None | |
# Default filter function to identify tensor parallel parameters | |
if filter_fn is None: | |
def is_tp(name, param): | |
return ( | |
any(key in name for key in ["to_q.0", "to_k.0", "to_v.0", "to_out.0", "layer1", "layer2"]) | |
and "_extra_state" not in name | |
) | |
filter_fn = is_tp | |
# Separate gradients into model parallel and non-model parallel | |
without_mp_grads_for_norm = [] | |
with_mp_grads_for_norm = [] | |
for name, param in self.named_parameters(): | |
if param.grad is not None: | |
if filter_fn(name, param): | |
with_mp_grads_for_norm.append(param.grad.detach()) | |
else: | |
without_mp_grads_for_norm.append(param.grad.detach()) | |
# Only L2 norm is currently supported | |
if norm_type != 2.0: | |
raise NotImplementedError(f"Norm type {norm_type} is not supported. Only L2 norm (2.0) is implemented.") | |
# Calculate L2 norm using NVIDIA's multi-tensor applier | |
dummy_overflow_buf = torch.tensor([0], dtype=torch.int, device="cuda") | |
# Calculate norm for non-model parallel gradients | |
without_mp_grad_norm = torch.tensor([0], dtype=torch.float, device="cuda") | |
if without_mp_grads_for_norm: | |
without_mp_grad_norm, _ = multi_tensor_applier( | |
l2_norm_impl, | |
dummy_overflow_buf, | |
[without_mp_grads_for_norm], | |
False, # no per-parameter norm | |
) | |
# Calculate norm for model parallel gradients | |
with_mp_grad_norm = torch.tensor([0], dtype=torch.float, device="cuda") | |
if with_mp_grads_for_norm: | |
with_mp_grad_norm, _ = multi_tensor_applier( | |
l2_norm_impl, | |
dummy_overflow_buf, | |
[with_mp_grads_for_norm], | |
False, # no per-parameter norm | |
) | |
# Square the norms as we'll be summing across model parallel GPUs | |
total_without_mp_norm = without_mp_grad_norm**2 | |
total_with_mp_norm = with_mp_grad_norm**2 | |
# Sum across all model-parallel GPUs | |
torch.distributed.all_reduce(total_with_mp_norm, op=torch.distributed.ReduceOp.SUM, group=model_parallel_group) | |
# Combine norms from model parallel and non-model parallel gradients | |
total_norm = (total_with_mp_norm.item() + total_without_mp_norm.item()) ** 0.5 | |
return total_norm | |
def clip_grad_norm_(self, max_norm: float): | |
""" | |
This function performs gradient clipping to prevent exploding gradients. | |
It calculates the total norm of the gradients, and if it exceeds the | |
specified max_norm, scales the gradients down proportionally. | |
Args: | |
max_norm (float): The maximum allowed norm for the gradients. | |
Returns: | |
torch.Tensor: The total norm of the gradients before clipping. | |
Note: | |
This implementation uses NVIDIA's multi-tensor applier for efficiency. | |
""" | |
# Collect gradients from all parameters that require gradients | |
grads = [] | |
for param in self.parameters(): | |
if param.grad is not None: | |
grads.append(param.grad.detach()) | |
# Calculate the total norm of the gradients | |
total_norm = self.get_grad_norm() | |
# Compute the clipping coefficient | |
clip_coeff = max_norm / (total_norm + 1.0e-6) | |
# Apply gradient clipping if the total norm exceeds max_norm | |
if clip_coeff < 1.0: | |
dummy_overflow_buf = torch.tensor([0], dtype=torch.int, device="cuda") | |
# Apply the scaling to the gradients using multi_tensor_applier for efficiency | |
multi_tensor_applier(multi_tensor_scale_impl, dummy_overflow_buf, [grads, grads], clip_coeff) | |
return torch.tensor([total_norm]) | |
def _allreduce_layernorm_grads(model: List[torch.nn.Module]): | |
""" | |
All-reduce the following layernorm grads: | |
- When tensor parallel is enabled, all-reduce grads of QK-layernorm | |
- When sequence parallel, all-reduce grads of AdaLN, t_embedder, additional_timestamp_embedder, | |
and affline_norm. | |
""" | |
sequence_parallel = getattr(parallel_state, "sequence_parallel", False) | |
if parallel_state.get_tensor_model_parallel_world_size() > 1: | |
grads = [] | |
for model_chunk in model: | |
for name, param in model_chunk.named_parameters(): | |
if not param.requires_grad: | |
continue | |
if "to_q.1" in name or "to_k.1" in name: # TP # Q-layernorm # K-layernorm | |
# grad = param.main_grad | |
grad = param.grad | |
if grad is not None: | |
grads.append(grad.data) | |
if sequence_parallel: # TP + SP | |
if ( | |
"t_embedder" in name | |
or "adaLN_modulation" in name | |
or "additional_timestamp_embedder" in name | |
or "affline_norm" in name | |
or "input_hint_block" in name | |
or "zero_blocks" in name | |
): | |
# grad = param.main_grad | |
grad = param.grad | |
if grad is not None: | |
grads.append(grad.data) | |
if grads: | |
coalesced = _flatten_dense_tensors(grads) | |
torch.distributed.all_reduce(coalesced, group=parallel_state.get_tensor_model_parallel_group()) | |
for buf, synced in zip(grads, _unflatten_dense_tensors(coalesced, grads)): | |
buf.copy_(synced) | |
def finalize_model_grads(model: List[torch.nn.Module]): | |
""" | |
All-reduce layernorm grads for tensor/sequence parallelism. | |
Reference implementation: https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/distributed/finalize_model_grads.py#L99 | |
""" | |
_allreduce_layernorm_grads(model) | |
class FSDPDiffusionModel(DiffusionModel): | |
pass | |