roll-ai's picture
Upload 381 files
b6af722 verified
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Any, Callable, Dict, List, Mapping, Optional, Tuple, Union
import amp_C
import torch
from apex.multi_tensor_apply import multi_tensor_applier
from einops import rearrange
from megatron.core import parallel_state
from torch import Tensor
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
from torch.distributed import broadcast_object_list, get_process_group_ranks
from torch.distributed.utils import _verify_param_shape_across_processes
from cosmos_predict1.diffusion.modules.res_sampler import COMMON_SOLVER_OPTIONS
from cosmos_predict1.diffusion.training.conditioner import BaseVideoCondition, DataType
from cosmos_predict1.diffusion.training.context_parallel import cat_outputs_cp, split_inputs_cp
from cosmos_predict1.diffusion.training.models.model_image import CosmosCondition
from cosmos_predict1.diffusion.training.models.model_image import DiffusionModel as ImageModel
from cosmos_predict1.diffusion.training.models.model_image import diffusion_fsdp_class_decorator
from cosmos_predict1.utils import distributed, log, misc
l2_norm_impl = amp_C.multi_tensor_l2norm
multi_tensor_scale_impl = amp_C.multi_tensor_scale
# key to check if the video data is normalized or image data is converted to video data
# to avoid apply normalization or augment image dimension multiple times
# It is due to we do not have normalization and augment image dimension in the dataloader and move it to the model
IS_PREPROCESSED_KEY = "is_preprocessed"
def robust_broadcast(tensor: torch.Tensor, src: int, pg, is_check_shape: bool = False) -> torch.Tensor:
"""
Perform a robust broadcast operation that works regardless of tensor shapes on different ranks.
Args:
tensor (torch.Tensor): The tensor to broadcast (on src rank) or receive (on other ranks).
src (int): The source rank for the broadcast. Defaults to 0.
Returns:
torch.Tensor: The broadcasted tensor on all ranks.
"""
# First, broadcast the shape of the tensor
if distributed.get_rank() == src:
shape = torch.tensor(tensor.shape).cuda()
else:
shape = torch.empty(tensor.dim(), dtype=torch.long).cuda()
if is_check_shape:
_verify_param_shape_across_processes(pg, [shape])
torch.distributed.broadcast(shape, src, group=pg)
# Resize the tensor on non-src ranks if necessary
if distributed.get_rank() != src:
tensor = tensor.new_empty(shape.tolist()).type_as(tensor)
# Now broadcast the tensor data
torch.distributed.broadcast(tensor, src, group=pg)
return tensor
def _broadcast(item: torch.Tensor | str | None, to_tp: bool = True, to_cp: bool = True) -> torch.Tensor | str | None:
"""
Broadcast the item from the minimum rank in the specified group(s).
Since global rank = tp_rank + cp_rank * tp_size + ...
First broadcast in the tp_group and then in the cp_group will
ensure that the item is broadcasted across ranks in cp_group and tp_group.
Parameters:
- item: The item to broadcast (can be a torch.Tensor, str, or None).
- to_tp: Whether to broadcast to the tensor model parallel group.
- to_cp: Whether to broadcast to the context parallel group.
"""
if not parallel_state.is_initialized():
return item
tp_group = parallel_state.get_tensor_model_parallel_group()
cp_group = parallel_state.get_context_parallel_group()
to_tp = to_tp and parallel_state.get_tensor_model_parallel_world_size() > 1
to_cp = to_cp and parallel_state.get_context_parallel_world_size() > 1
if to_tp:
min_tp_rank = min(get_process_group_ranks(tp_group))
if to_cp:
min_cp_rank = min(get_process_group_ranks(cp_group))
if isinstance(item, torch.Tensor): # assume the device is cuda
# log.info(f"{item.shape}", rank0_only=False)
if to_tp:
# torch.distributed.broadcast(item, min_tp_rank, group=tp_group)
item = robust_broadcast(item, min_tp_rank, tp_group)
if to_cp:
# torch.distributed.broadcast(item, min_cp_rank, group=cp_group)
item = robust_broadcast(item, min_cp_rank, cp_group)
elif item is not None:
broadcastable_list = [item]
if to_tp:
# log.info(f"{broadcastable_list}", rank0_only=False)
broadcast_object_list(broadcastable_list, min_tp_rank, group=tp_group)
if to_cp:
broadcast_object_list(broadcastable_list, min_cp_rank, group=cp_group)
item = broadcastable_list[0]
return item
def broadcast_condition(condition: BaseVideoCondition, to_tp: bool = True, to_cp: bool = True) -> BaseVideoCondition:
condition_kwargs = {}
for k, v in condition.to_dict().items():
if isinstance(v, torch.Tensor):
assert not v.requires_grad, f"{k} requires gradient. the current impl does not support it"
condition_kwargs[k] = _broadcast(v, to_tp=to_tp, to_cp=to_cp)
condition = type(condition)(**condition_kwargs)
return condition
class DiffusionModel(ImageModel):
def __init__(self, config):
super().__init__(config)
# Initialize trained_data_record with defaultdict, key: image, video, iteration
self.trained_data_record = {
"image": 0,
"video": 0,
"iteration": 0,
}
if parallel_state.is_initialized():
self.data_parallel_size = parallel_state.get_data_parallel_world_size()
else:
self.data_parallel_size = 1
if self.config.adjust_video_noise:
self.video_noise_multiplier = math.sqrt(self.state_shape[1])
else:
self.video_noise_multiplier = 1.0
def setup_data_key(self) -> None:
self.input_data_key = self.config.input_data_key # by default it is video key for Video diffusion model
self.input_image_key = self.config.input_image_key
def is_image_batch(self, data_batch: dict[str, Tensor]) -> bool:
"""We hanlde two types of data_batch. One comes from a joint_dataloader where "dataset_name" can be used to differenciate image_batch and video_batch.
Another comes from a dataloader which we by default assumes as video_data for video model training.
"""
is_image = self.input_image_key in data_batch
is_video = self.input_data_key in data_batch
assert (
is_image != is_video
), "Only one of the input_image_key or input_data_key should be present in the data_batch."
return is_image
def draw_training_sigma_and_epsilon(self, size: int, condition: BaseVideoCondition) -> Tensor:
sigma_B, epsilon = super().draw_training_sigma_and_epsilon(size, condition)
is_video_batch = condition.data_type == DataType.VIDEO
multiplier = self.video_noise_multiplier if is_video_batch else 1
sigma_B = _broadcast(sigma_B * multiplier, to_tp=True, to_cp=is_video_batch)
epsilon = _broadcast(epsilon, to_tp=True, to_cp=is_video_batch)
return sigma_B, epsilon
@torch.no_grad()
def validation_step(
self, data: dict[str, torch.Tensor], iteration: int
) -> tuple[dict[str, torch.Tensor], torch.Tensor]:
"""
save generated videos
"""
raw_data, x0, condition = self.get_data_and_condition(data)
guidance = data["guidance"]
data = misc.to(data, **self.tensor_kwargs)
sample = self.generate_samples_from_batch(
data,
guidance=guidance,
# make sure no mismatch and also works for cp
state_shape=x0.shape[1:],
n_sample=x0.shape[0],
)
sample = self.decode(sample)
gt = raw_data
caption = data["ai_caption"]
return {"gt": gt, "result": sample, "caption": caption}, torch.tensor([0]).to(**self.tensor_kwargs)
def training_step(self, data_batch: Dict[str, Tensor], iteration: int) -> Tuple[Dict[str, Tensor] | Tensor]:
input_key = self.input_data_key # by default it is video key
if self.is_image_batch(data_batch):
input_key = self.input_image_key
batch_size = data_batch[input_key].shape[0]
self.trained_data_record["image" if self.is_image_batch(data_batch) else "video"] += (
batch_size * self.data_parallel_size
)
self.trained_data_record["iteration"] += 1
return super().training_step(data_batch, iteration)
def state_dict(self) -> Dict[str, Any]:
state_dict = super().state_dict()
state_dict["trained_data_record"] = self.trained_data_record
return state_dict
def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True, assign: bool = False):
if "trained_data_record" in state_dict and hasattr(self, "trained_data_record"):
trained_data_record = state_dict.pop("trained_data_record")
if trained_data_record:
assert set(trained_data_record.keys()) == set(self.trained_data_record.keys())
for k, v in trained_data_record.items():
self.trained_data_record[k] = v
else:
log.warning("trained_data_record not found in the state_dict.")
return super().load_state_dict(state_dict, strict, assign)
def _normalize_video_databatch_inplace(self, data_batch: dict[str, Tensor], input_key: str = None) -> None:
"""
Normalizes video data in-place on a CUDA device to reduce data loading overhead.
This function modifies the video data tensor within the provided data_batch dictionary
in-place, scaling the uint8 data from the range [0, 255] to the normalized range [-1, 1].
Warning:
A warning is issued if the data has not been previously normalized.
Args:
data_batch (dict[str, Tensor]): A dictionary containing the video data under a specific key.
This tensor is expected to be on a CUDA device and have dtype of torch.uint8.
Side Effects:
Modifies the 'input_data_key' tensor within the 'data_batch' dictionary in-place.
Note:
This operation is performed directly on the CUDA device to avoid the overhead associated
with moving data to/from the GPU. Ensure that the tensor is already on the appropriate device
and has the correct dtype (torch.uint8) to avoid unexpected behaviors.
"""
input_key = self.input_data_key if input_key is None else input_key
# only handle video batch
if input_key in data_batch:
# Check if the data has already been normalized and avoid re-normalizing
if IS_PREPROCESSED_KEY in data_batch and data_batch[IS_PREPROCESSED_KEY] is True:
assert torch.is_floating_point(data_batch[input_key]), "Video data is not in float format."
assert torch.all(
(data_batch[input_key] >= -1.0001) & (data_batch[input_key] <= 1.0001)
), f"Video data is not in the range [-1, 1]. get data range [{data_batch[input_key].min()}, {data_batch[input_key].max()}]"
else:
assert data_batch[input_key].dtype == torch.uint8, "Video data is not in uint8 format."
data_batch[input_key] = data_batch[input_key].to(**self.tensor_kwargs) / 127.5 - 1.0
data_batch[IS_PREPROCESSED_KEY] = True
def _augment_image_dim_inplace(self, data_batch: dict[str, Tensor], input_key: str = None) -> None:
input_key = self.input_image_key if input_key is None else input_key
if input_key in data_batch:
# Check if the data has already been augmented and avoid re-augmenting
if IS_PREPROCESSED_KEY in data_batch and data_batch[IS_PREPROCESSED_KEY] is True:
assert (
data_batch[input_key].shape[2] == 1
), f"Image data is claimed be augmented while its shape is {data_batch[input_key].shape}"
return
else:
data_batch[input_key] = rearrange(data_batch[input_key], "b c h w -> b c 1 h w").contiguous()
data_batch[IS_PREPROCESSED_KEY] = True
def get_data_and_condition(self, data_batch: dict[str, Tensor]) -> Tuple[Tensor, BaseVideoCondition]:
self._normalize_video_databatch_inplace(data_batch)
self._augment_image_dim_inplace(data_batch)
input_key = self.input_data_key # by default it is video key
is_image_batch = self.is_image_batch(data_batch)
is_video_batch = not is_image_batch
# Broadcast data and condition across TP and CP groups.
# sort keys to make sure the order is same, IMPORTANT! otherwise, nccl will hang!
local_keys = sorted(list(data_batch.keys()))
# log.critical(f"all keys {local_keys}", rank0_only=False)
for key in local_keys:
data_batch[key] = _broadcast(data_batch[key], to_tp=True, to_cp=is_video_batch)
if is_image_batch:
input_key = self.input_image_key
# Latent state
raw_state = data_batch[input_key]
latent_state = self.encode(raw_state).contiguous()
# Condition
condition = self.conditioner(data_batch)
if is_image_batch:
condition.data_type = DataType.IMAGE
else:
condition.data_type = DataType.VIDEO
# VAE has randomness. CP/TP group should have the same encoded output.
latent_state = _broadcast(latent_state, to_tp=True, to_cp=is_video_batch)
condition = broadcast_condition(condition, to_tp=True, to_cp=is_video_batch)
return raw_state, latent_state, condition
def on_train_start(self, memory_format: torch.memory_format = torch.preserve_format) -> None:
super().on_train_start(memory_format)
if parallel_state.is_initialized() and parallel_state.get_tensor_model_parallel_world_size() > 1:
sequence_parallel = getattr(parallel_state, "sequence_parallel", False)
if sequence_parallel:
self.net.enable_sequence_parallel()
def compute_loss_with_epsilon_and_sigma(
self,
data_batch: dict[str, torch.Tensor],
x0_from_data_batch: torch.Tensor,
x0: torch.Tensor,
condition: CosmosCondition,
epsilon: torch.Tensor,
sigma: torch.Tensor,
):
if self.is_image_batch(data_batch):
# Turn off CP
self.net.disable_context_parallel()
else:
if parallel_state.is_initialized():
if parallel_state.get_context_parallel_world_size() > 1:
# Turn on CP
cp_group = parallel_state.get_context_parallel_group()
self.net.enable_context_parallel(cp_group)
log.debug("[CP] Split x0 and epsilon")
x0 = split_inputs_cp(x=x0, seq_dim=2, cp_group=self.net.cp_group)
epsilon = split_inputs_cp(x=epsilon, seq_dim=2, cp_group=self.net.cp_group)
output_batch, kendall_loss, pred_mse, edm_loss = super().compute_loss_with_epsilon_and_sigma(
data_batch, x0_from_data_batch, x0, condition, epsilon, sigma
)
if not self.is_image_batch(data_batch):
if self.loss_reduce == "sum" and parallel_state.get_context_parallel_world_size() > 1:
kendall_loss *= parallel_state.get_context_parallel_world_size()
return output_batch, kendall_loss, pred_mse, edm_loss
def get_x0_fn_from_batch(
self,
data_batch: Dict,
guidance: float = 1.5,
is_negative_prompt: bool = False,
) -> Callable:
"""
Generates a callable function `x0_fn` based on the provided data batch and guidance factor.
This function first processes the input data batch through a conditioning workflow (`conditioner`) to obtain conditioned and unconditioned states. It then defines a nested function `x0_fn` which applies a denoising operation on an input `noise_x` at a given noise level `sigma` using both the conditioned and unconditioned states.
Args:
- data_batch (Dict): A batch of data used for conditioning. The format and content of this dictionary should align with the expectations of the `self.conditioner`
- guidance (float, optional): A scalar value that modulates the influence of the conditioned state relative to the unconditioned state in the output. Defaults to 1.5.
- is_negative_prompt (bool): use negative prompt t5 in uncondition if true
Returns:
- Callable: A function `x0_fn(noise_x, sigma)` that takes two arguments, `noise_x` and `sigma`, and return x0 predictoin
The returned function is suitable for use in scenarios where a denoised state is required based on both conditioned and unconditioned inputs, with an adjustable level of guidance influence.
"""
if is_negative_prompt:
condition, uncondition = self.conditioner.get_condition_with_negative_prompt(data_batch)
else:
condition, uncondition = self.conditioner.get_condition_uncondition(data_batch)
to_cp = self.net.is_context_parallel_enabled
# For inference, check if parallel_state is initialized
if parallel_state.is_initialized():
condition = broadcast_condition(condition, to_tp=True, to_cp=to_cp)
uncondition = broadcast_condition(uncondition, to_tp=True, to_cp=to_cp)
else:
assert not to_cp, "parallel_state is not initialized, context parallel should be turned off."
def x0_fn(noise_x: torch.Tensor, sigma: torch.Tensor) -> torch.Tensor:
cond_x0 = self.denoise(noise_x, sigma, condition).x0
uncond_x0 = self.denoise(noise_x, sigma, uncondition).x0
raw_x0 = cond_x0 + guidance * (cond_x0 - uncond_x0)
if "guided_image" in data_batch:
# replacement trick that enables inpainting with base model
assert "guided_mask" in data_batch, "guided_mask should be in data_batch if guided_image is present"
guide_image = data_batch["guided_image"]
guide_mask = data_batch["guided_mask"]
raw_x0 = guide_mask * guide_image + (1 - guide_mask) * raw_x0
return raw_x0
return x0_fn
def get_x_from_clean(
self,
in_clean_img: torch.Tensor,
sigma_max: float | None,
seed: int = 1,
) -> Tensor:
"""
in_clean_img (torch.Tensor): input clean image for image-to-image/video-to-video by adding noise then denoising
sigma_max (float): maximum sigma applied to in_clean_image for image-to-image/video-to-video
"""
if in_clean_img is None:
return None
generator = torch.Generator(device=self.tensor_kwargs["device"])
generator.manual_seed(seed)
noise = torch.randn(*in_clean_img.shape, **self.tensor_kwargs, generator=generator)
if sigma_max is None:
sigma_max = self.sde.sigma_max
x_sigma_max = in_clean_img + noise * sigma_max
return x_sigma_max
def generate_samples_from_batch(
self,
data_batch: Dict,
guidance: float = 1.5,
seed: int = 1,
state_shape: Tuple | None = None,
n_sample: int | None = None,
is_negative_prompt: bool = False,
num_steps: int = 35,
solver_option: COMMON_SOLVER_OPTIONS = "2ab",
x_sigma_max: Optional[torch.Tensor] = None,
sigma_max: float | None = None,
return_noise: bool = False,
) -> Tensor | Tuple[Tensor, Tensor]:
"""
Generate samples from the batch. Based on given batch, it will automatically determine whether to generate image or video samples.
Args:
data_batch (dict): raw data batch draw from the training data loader.
iteration (int): Current iteration number.
guidance (float): guidance weights
seed (int): random seed
state_shape (tuple): shape of the state, default to self.state_shape if not provided
n_sample (int): number of samples to generate
is_negative_prompt (bool): use negative prompt t5 in uncondition if true
num_steps (int): number of steps for the diffusion process
solver_option (str): differential equation solver option, default to "2ab"~(mulitstep solver)
return_noise (bool): return the initial noise or not, used for ODE pairs generation
"""
self._normalize_video_databatch_inplace(data_batch)
self._augment_image_dim_inplace(data_batch)
is_image_batch = self.is_image_batch(data_batch)
if n_sample is None:
input_key = self.input_image_key if is_image_batch else self.input_data_key
n_sample = data_batch[input_key].shape[0]
if state_shape is None:
if is_image_batch:
state_shape = (self.state_shape[0], 1, *self.state_shape[2:]) # C,T,H,W
x0_fn = self.get_x0_fn_from_batch(data_batch, guidance, is_negative_prompt=is_negative_prompt)
x_sigma_max = (
misc.arch_invariant_rand(
(n_sample,) + tuple(state_shape),
torch.float32,
self.tensor_kwargs["device"],
seed,
)
* self.sde.sigma_max
)
if self.net.is_context_parallel_enabled:
x_sigma_max = split_inputs_cp(x=x_sigma_max, seq_dim=2, cp_group=self.net.cp_group)
samples = self.sampler(
x0_fn, x_sigma_max, num_steps=num_steps, sigma_max=self.sde.sigma_max, solver_option=solver_option
)
if self.net.is_context_parallel_enabled:
samples = cat_outputs_cp(samples, seq_dim=2, cp_group=self.net.cp_group)
if return_noise:
if self.net.is_context_parallel_enabled:
x_sigma_max = cat_outputs_cp(x_sigma_max, seq_dim=2, cp_group=self.net.cp_group)
return samples, x_sigma_max / self.sde.sigma_max
return samples
def on_after_backward(self, iteration: int = 0):
finalize_model_grads([self])
def get_grad_norm(
self,
norm_type: Union[int, float] = 2,
filter_fn: Callable[[str, torch.nn.Parameter], bool] | None = None,
) -> float:
"""Calculate the norm of gradients, handling model parallel parameters.
This function is adapted from torch.nn.utils.clip_grad.clip_grad_norm_
with added functionality to handle model parallel parameters.
Args:
norm_type (float or int): Type of norm to use. Can be 2 for L2 norm.
'inf' for infinity norm is not supported.
filter_fn (callable, optional): Function to filter parameters for norm calculation.
Takes parameter name and parameter as input, returns True if this parameter is sharded else False.
Returns:
float: Total norm of the parameters (viewed as a single vector).
Note:
- Uses NVIDIA's multi-tensor applier for efficient norm calculation.
- Handles both model parallel and non-model parallel parameters separately.
- Currently only supports L2 norm (norm_type = 2).
"""
# Get model parallel group if parallel state is initialized
if parallel_state.is_initialized():
model_parallel_group = parallel_state.get_model_parallel_group()
else:
model_parallel_group = None
# Default filter function to identify tensor parallel parameters
if filter_fn is None:
def is_tp(name, param):
return (
any(key in name for key in ["to_q.0", "to_k.0", "to_v.0", "to_out.0", "layer1", "layer2"])
and "_extra_state" not in name
)
filter_fn = is_tp
# Separate gradients into model parallel and non-model parallel
without_mp_grads_for_norm = []
with_mp_grads_for_norm = []
for name, param in self.named_parameters():
if param.grad is not None:
if filter_fn(name, param):
with_mp_grads_for_norm.append(param.grad.detach())
else:
without_mp_grads_for_norm.append(param.grad.detach())
# Only L2 norm is currently supported
if norm_type != 2.0:
raise NotImplementedError(f"Norm type {norm_type} is not supported. Only L2 norm (2.0) is implemented.")
# Calculate L2 norm using NVIDIA's multi-tensor applier
dummy_overflow_buf = torch.tensor([0], dtype=torch.int, device="cuda")
# Calculate norm for non-model parallel gradients
without_mp_grad_norm = torch.tensor([0], dtype=torch.float, device="cuda")
if without_mp_grads_for_norm:
without_mp_grad_norm, _ = multi_tensor_applier(
l2_norm_impl,
dummy_overflow_buf,
[without_mp_grads_for_norm],
False, # no per-parameter norm
)
# Calculate norm for model parallel gradients
with_mp_grad_norm = torch.tensor([0], dtype=torch.float, device="cuda")
if with_mp_grads_for_norm:
with_mp_grad_norm, _ = multi_tensor_applier(
l2_norm_impl,
dummy_overflow_buf,
[with_mp_grads_for_norm],
False, # no per-parameter norm
)
# Square the norms as we'll be summing across model parallel GPUs
total_without_mp_norm = without_mp_grad_norm**2
total_with_mp_norm = with_mp_grad_norm**2
# Sum across all model-parallel GPUs
torch.distributed.all_reduce(total_with_mp_norm, op=torch.distributed.ReduceOp.SUM, group=model_parallel_group)
# Combine norms from model parallel and non-model parallel gradients
total_norm = (total_with_mp_norm.item() + total_without_mp_norm.item()) ** 0.5
return total_norm
def clip_grad_norm_(self, max_norm: float):
"""
This function performs gradient clipping to prevent exploding gradients.
It calculates the total norm of the gradients, and if it exceeds the
specified max_norm, scales the gradients down proportionally.
Args:
max_norm (float): The maximum allowed norm for the gradients.
Returns:
torch.Tensor: The total norm of the gradients before clipping.
Note:
This implementation uses NVIDIA's multi-tensor applier for efficiency.
"""
# Collect gradients from all parameters that require gradients
grads = []
for param in self.parameters():
if param.grad is not None:
grads.append(param.grad.detach())
# Calculate the total norm of the gradients
total_norm = self.get_grad_norm()
# Compute the clipping coefficient
clip_coeff = max_norm / (total_norm + 1.0e-6)
# Apply gradient clipping if the total norm exceeds max_norm
if clip_coeff < 1.0:
dummy_overflow_buf = torch.tensor([0], dtype=torch.int, device="cuda")
# Apply the scaling to the gradients using multi_tensor_applier for efficiency
multi_tensor_applier(multi_tensor_scale_impl, dummy_overflow_buf, [grads, grads], clip_coeff)
return torch.tensor([total_norm])
def _allreduce_layernorm_grads(model: List[torch.nn.Module]):
"""
All-reduce the following layernorm grads:
- When tensor parallel is enabled, all-reduce grads of QK-layernorm
- When sequence parallel, all-reduce grads of AdaLN, t_embedder, additional_timestamp_embedder,
and affline_norm.
"""
sequence_parallel = getattr(parallel_state, "sequence_parallel", False)
if parallel_state.get_tensor_model_parallel_world_size() > 1:
grads = []
for model_chunk in model:
for name, param in model_chunk.named_parameters():
if not param.requires_grad:
continue
if "to_q.1" in name or "to_k.1" in name: # TP # Q-layernorm # K-layernorm
# grad = param.main_grad
grad = param.grad
if grad is not None:
grads.append(grad.data)
if sequence_parallel: # TP + SP
if (
"t_embedder" in name
or "adaLN_modulation" in name
or "additional_timestamp_embedder" in name
or "affline_norm" in name
or "input_hint_block" in name
or "zero_blocks" in name
):
# grad = param.main_grad
grad = param.grad
if grad is not None:
grads.append(grad.data)
if grads:
coalesced = _flatten_dense_tensors(grads)
torch.distributed.all_reduce(coalesced, group=parallel_state.get_tensor_model_parallel_group())
for buf, synced in zip(grads, _unflatten_dense_tensors(coalesced, grads)):
buf.copy_(synced)
def finalize_model_grads(model: List[torch.nn.Module]):
"""
All-reduce layernorm grads for tensor/sequence parallelism.
Reference implementation: https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/distributed/finalize_model_grads.py#L99
"""
_allreduce_layernorm_grads(model)
@diffusion_fsdp_class_decorator
class FSDPDiffusionModel(DiffusionModel):
pass