Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import copy | |
from typing import Callable, Dict, Optional, Tuple, Union | |
import torch | |
from einops import rearrange | |
from megatron.core import parallel_state | |
from torch import Tensor | |
from cosmos_predict1.diffusion.modules.res_sampler import COMMON_SOLVER_OPTIONS | |
from cosmos_predict1.diffusion.training.conditioner import DataType | |
from cosmos_predict1.diffusion.training.context_parallel import cat_outputs_cp, split_inputs_cp | |
from cosmos_predict1.diffusion.training.models.model import DiffusionModel, broadcast_condition | |
from cosmos_predict1.diffusion.training.models.model_image import CosmosCondition, diffusion_fsdp_class_decorator | |
from cosmos_predict1.utils import log, misc | |
class MultiviewDiffusionModel(DiffusionModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.n_views = config.n_views | |
def encode(self, state: torch.Tensor) -> torch.Tensor: | |
state = rearrange(state, "B C (V T) H W -> (B V) C T H W", V=self.n_views) | |
encoded_state = self.vae.encode(state) | |
encoded_state = rearrange(encoded_state, "(B V) C T H W -> B C (V T) H W", V=self.n_views) * self.sigma_data | |
return encoded_state | |
def decode(self, latent: torch.Tensor) -> torch.Tensor: | |
latent = rearrange(latent, "B C (V T) H W -> (B V) C T H W", V=self.n_views) | |
decoded_state = self.vae.decode(latent / self.sigma_data) | |
decoded_state = rearrange(decoded_state, "(B V) C T H W -> B C (V T) H W", V=self.n_views) | |
return decoded_state | |
def compute_loss_with_epsilon_and_sigma( | |
self, | |
data_batch: dict[str, torch.Tensor], | |
x0_from_data_batch: torch.Tensor, | |
x0: torch.Tensor, | |
condition: CosmosCondition, | |
epsilon: torch.Tensor, | |
sigma: torch.Tensor, | |
): | |
if self.is_image_batch(data_batch): | |
# Turn off CP | |
self.net.disable_context_parallel() | |
else: | |
if parallel_state.is_initialized(): | |
if parallel_state.get_context_parallel_world_size() > 1: | |
# Turn on CP | |
cp_group = parallel_state.get_context_parallel_group() | |
self.net.enable_context_parallel(cp_group) | |
log.debug("[CP] Split x0 and epsilon") | |
x0 = rearrange(x0, "B C (V T) H W -> (B V) C T H W", V=self.n_views) | |
epsilon = rearrange(epsilon, "B C (V T) H W -> (B V) C T H W", V=self.n_views) | |
x0 = split_inputs_cp(x=x0, seq_dim=2, cp_group=self.net.cp_group) | |
epsilon = split_inputs_cp(x=epsilon, seq_dim=2, cp_group=self.net.cp_group) | |
x0 = rearrange(x0, "(B V) C T H W -> B C (V T) H W", V=self.n_views) | |
epsilon = rearrange(epsilon, "(B V) C T H W -> B C (V T) H W", V=self.n_views) | |
output_batch, kendall_loss, pred_mse, edm_loss = super( | |
DiffusionModel, self | |
).compute_loss_with_epsilon_and_sigma(data_batch, x0_from_data_batch, x0, condition, epsilon, sigma) | |
if not self.is_image_batch(data_batch): | |
if self.loss_reduce == "sum" and parallel_state.get_context_parallel_world_size() > 1: | |
kendall_loss *= parallel_state.get_context_parallel_world_size() | |
return output_batch, kendall_loss, pred_mse, edm_loss | |
def generate_samples_from_batch( | |
self, | |
data_batch: Dict, | |
guidance: float = 1.5, | |
seed: int = 1, | |
state_shape: Tuple | None = None, | |
n_sample: int | None = None, | |
is_negative_prompt: bool = False, | |
num_steps: int = 35, | |
solver_option: COMMON_SOLVER_OPTIONS = "2ab", | |
x_sigma_max: Optional[torch.Tensor] = None, | |
sigma_max: float | None = None, | |
guidance_other: Union[float, None] = None, | |
) -> Tensor: | |
""" | |
Generate samples from the batch. Based on given batch, it will automatically determine whether to generate image or video samples. | |
Args: | |
data_batch (dict): raw data batch draw from the training data loader. | |
iteration (int): Current iteration number. | |
guidance (float): guidance weights | |
seed (int): random seed | |
state_shape (tuple): shape of the state, default to self.state_shape if not provided | |
n_sample (int): number of samples to generate | |
is_negative_prompt (bool): use negative prompt t5 in uncondition if true | |
num_steps (int): number of steps for the diffusion process | |
solver_option (str): differential equation solver option, default to "2ab"~(mulitstep solver) | |
""" | |
self._normalize_video_databatch_inplace(data_batch) | |
self._augment_image_dim_inplace(data_batch) | |
is_image_batch = self.is_image_batch(data_batch) | |
if n_sample is None: | |
input_key = self.input_image_key if is_image_batch else self.input_data_key | |
n_sample = data_batch[input_key].shape[0] | |
if state_shape is None: | |
if is_image_batch: | |
state_shape = (self.state_shape[0], 1, *self.state_shape[2:]) # C,T,H,W | |
x0_fn = self.get_x0_fn_from_batch( | |
data_batch, guidance, is_negative_prompt=is_negative_prompt, guidance_other=guidance_other | |
) | |
x_sigma_max = ( | |
misc.arch_invariant_rand( | |
(n_sample,) + tuple(state_shape), | |
torch.float32, | |
self.tensor_kwargs["device"], | |
seed, | |
) | |
* self.sde.sigma_max | |
) | |
if self.net.is_context_parallel_enabled: | |
x_sigma_max = rearrange(x_sigma_max, "B C (V T) H W -> (B V) C T H W", V=self.n_views) | |
x_sigma_max = split_inputs_cp(x=x_sigma_max, seq_dim=2, cp_group=self.net.cp_group) | |
x_sigma_max = rearrange(x_sigma_max, "(B V) C T H W -> B C (V T) H W", V=self.n_views) | |
samples = self.sampler( | |
x0_fn, x_sigma_max, num_steps=num_steps, sigma_max=self.sde.sigma_max, solver_option=solver_option | |
) | |
if self.net.is_context_parallel_enabled: | |
samples = rearrange(samples, "B C (V T) H W -> (B V) C T H W", V=self.n_views) | |
samples = cat_outputs_cp(samples, seq_dim=2, cp_group=self.net.cp_group) | |
samples = rearrange(samples, "(B V) C T H W -> B C (V T) H W", V=self.n_views) | |
return samples | |
def get_x0_fn_from_batch( | |
self, | |
data_batch: Dict, | |
guidance: float = 1.5, | |
is_negative_prompt: bool = False, | |
guidance_other: Union[float, None] = None, | |
) -> Callable: | |
""" | |
Generates a callable function `x0_fn` based on the provided data batch and guidance factor. | |
This function first processes the input data batch through a conditioning workflow (`conditioner`) to obtain conditioned and unconditioned states. It then defines a nested function `x0_fn` which applies a denoising operation on an input `noise_x` at a given noise level `sigma` using both the conditioned and unconditioned states. | |
Args: | |
- data_batch (Dict): A batch of data used for conditioning. The format and content of this dictionary should align with the expectations of the `self.conditioner` | |
- guidance (float, optional): A scalar value that modulates the influence of the conditioned state relative to the unconditioned state in the output. Defaults to 1.5. | |
- is_negative_prompt (bool): use negative prompt t5 in uncondition if true | |
Returns: | |
- Callable: A function `x0_fn(noise_x, sigma)` that takes two arguments, `noise_x` and `sigma`, and return x0 predictoin | |
The returned function is suitable for use in scenarios where a denoised state is required based on both conditioned and unconditioned inputs, with an adjustable level of guidance influence. | |
""" | |
if is_negative_prompt: | |
condition, uncondition = self.conditioner.get_condition_with_negative_prompt(data_batch) | |
else: | |
condition, uncondition = self.conditioner.get_condition_uncondition(data_batch) | |
to_cp = self.net.is_context_parallel_enabled | |
# For inference, check if parallel_state is initialized | |
if parallel_state.is_initialized(): | |
condition = broadcast_condition(condition, to_tp=True, to_cp=to_cp) | |
uncondition = broadcast_condition(uncondition, to_tp=True, to_cp=to_cp) | |
else: | |
assert not to_cp, "parallel_state is not initialized, context parallel should be turned off." | |
if guidance_other is not None: | |
# assume this is for inference time trajectory guidance for now | |
assert not parallel_state.is_initialized(), "Parallel state not supported with two guidances." | |
condition_other = copy.deepcopy(uncondition) | |
condition_other.trajectory = condition.trajectory | |
def x0_fn(noise_x: torch.Tensor, sigma: torch.Tensor) -> torch.Tensor: | |
cond_x0 = self.denoise(noise_x, sigma, condition).x0 | |
uncond_x0 = self.denoise(noise_x, sigma, uncondition).x0 | |
cond_other_x0 = self.denoise(noise_x, sigma, condition_other).x0 | |
raw_x0 = cond_x0 + guidance * (cond_x0 - uncond_x0) + guidance_other * (cond_other_x0 - uncond_x0) | |
if "guided_image" in data_batch: | |
assert False, "not supported" | |
return raw_x0 | |
else: | |
def x0_fn(noise_x: torch.Tensor, sigma: torch.Tensor) -> torch.Tensor: | |
cond_x0 = self.denoise(noise_x, sigma, condition).x0 | |
uncond_x0 = self.denoise(noise_x, sigma, uncondition).x0 | |
raw_x0 = cond_x0 + guidance * (cond_x0 - uncond_x0) | |
if "guided_image" in data_batch: | |
# replacement trick that enables inpainting with base model | |
assert "guided_mask" in data_batch, "guided_mask should be in data_batch if guided_image is present" | |
guide_image = data_batch["guided_image"] | |
guide_mask = data_batch["guided_mask"] | |
raw_x0 = guide_mask * guide_image + (1 - guide_mask) * raw_x0 | |
return raw_x0 | |
return x0_fn | |
class FSDPDiffusionModel(MultiviewDiffusionModel): | |
pass | |