roll-ai's picture
Upload 381 files
b6af722 verified
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
from typing import Callable, Dict, Optional, Tuple, Union
import torch
from einops import rearrange
from megatron.core import parallel_state
from torch import Tensor
from cosmos_predict1.diffusion.modules.res_sampler import COMMON_SOLVER_OPTIONS
from cosmos_predict1.diffusion.training.conditioner import DataType
from cosmos_predict1.diffusion.training.context_parallel import cat_outputs_cp, split_inputs_cp
from cosmos_predict1.diffusion.training.models.model import DiffusionModel, broadcast_condition
from cosmos_predict1.diffusion.training.models.model_image import CosmosCondition, diffusion_fsdp_class_decorator
from cosmos_predict1.utils import log, misc
class MultiviewDiffusionModel(DiffusionModel):
def __init__(self, config):
super().__init__(config)
self.n_views = config.n_views
@torch.no_grad()
def encode(self, state: torch.Tensor) -> torch.Tensor:
state = rearrange(state, "B C (V T) H W -> (B V) C T H W", V=self.n_views)
encoded_state = self.vae.encode(state)
encoded_state = rearrange(encoded_state, "(B V) C T H W -> B C (V T) H W", V=self.n_views) * self.sigma_data
return encoded_state
@torch.no_grad()
def decode(self, latent: torch.Tensor) -> torch.Tensor:
latent = rearrange(latent, "B C (V T) H W -> (B V) C T H W", V=self.n_views)
decoded_state = self.vae.decode(latent / self.sigma_data)
decoded_state = rearrange(decoded_state, "(B V) C T H W -> B C (V T) H W", V=self.n_views)
return decoded_state
def compute_loss_with_epsilon_and_sigma(
self,
data_batch: dict[str, torch.Tensor],
x0_from_data_batch: torch.Tensor,
x0: torch.Tensor,
condition: CosmosCondition,
epsilon: torch.Tensor,
sigma: torch.Tensor,
):
if self.is_image_batch(data_batch):
# Turn off CP
self.net.disable_context_parallel()
else:
if parallel_state.is_initialized():
if parallel_state.get_context_parallel_world_size() > 1:
# Turn on CP
cp_group = parallel_state.get_context_parallel_group()
self.net.enable_context_parallel(cp_group)
log.debug("[CP] Split x0 and epsilon")
x0 = rearrange(x0, "B C (V T) H W -> (B V) C T H W", V=self.n_views)
epsilon = rearrange(epsilon, "B C (V T) H W -> (B V) C T H W", V=self.n_views)
x0 = split_inputs_cp(x=x0, seq_dim=2, cp_group=self.net.cp_group)
epsilon = split_inputs_cp(x=epsilon, seq_dim=2, cp_group=self.net.cp_group)
x0 = rearrange(x0, "(B V) C T H W -> B C (V T) H W", V=self.n_views)
epsilon = rearrange(epsilon, "(B V) C T H W -> B C (V T) H W", V=self.n_views)
output_batch, kendall_loss, pred_mse, edm_loss = super(
DiffusionModel, self
).compute_loss_with_epsilon_and_sigma(data_batch, x0_from_data_batch, x0, condition, epsilon, sigma)
if not self.is_image_batch(data_batch):
if self.loss_reduce == "sum" and parallel_state.get_context_parallel_world_size() > 1:
kendall_loss *= parallel_state.get_context_parallel_world_size()
return output_batch, kendall_loss, pred_mse, edm_loss
def generate_samples_from_batch(
self,
data_batch: Dict,
guidance: float = 1.5,
seed: int = 1,
state_shape: Tuple | None = None,
n_sample: int | None = None,
is_negative_prompt: bool = False,
num_steps: int = 35,
solver_option: COMMON_SOLVER_OPTIONS = "2ab",
x_sigma_max: Optional[torch.Tensor] = None,
sigma_max: float | None = None,
guidance_other: Union[float, None] = None,
) -> Tensor:
"""
Generate samples from the batch. Based on given batch, it will automatically determine whether to generate image or video samples.
Args:
data_batch (dict): raw data batch draw from the training data loader.
iteration (int): Current iteration number.
guidance (float): guidance weights
seed (int): random seed
state_shape (tuple): shape of the state, default to self.state_shape if not provided
n_sample (int): number of samples to generate
is_negative_prompt (bool): use negative prompt t5 in uncondition if true
num_steps (int): number of steps for the diffusion process
solver_option (str): differential equation solver option, default to "2ab"~(mulitstep solver)
"""
self._normalize_video_databatch_inplace(data_batch)
self._augment_image_dim_inplace(data_batch)
is_image_batch = self.is_image_batch(data_batch)
if n_sample is None:
input_key = self.input_image_key if is_image_batch else self.input_data_key
n_sample = data_batch[input_key].shape[0]
if state_shape is None:
if is_image_batch:
state_shape = (self.state_shape[0], 1, *self.state_shape[2:]) # C,T,H,W
x0_fn = self.get_x0_fn_from_batch(
data_batch, guidance, is_negative_prompt=is_negative_prompt, guidance_other=guidance_other
)
x_sigma_max = (
misc.arch_invariant_rand(
(n_sample,) + tuple(state_shape),
torch.float32,
self.tensor_kwargs["device"],
seed,
)
* self.sde.sigma_max
)
if self.net.is_context_parallel_enabled:
x_sigma_max = rearrange(x_sigma_max, "B C (V T) H W -> (B V) C T H W", V=self.n_views)
x_sigma_max = split_inputs_cp(x=x_sigma_max, seq_dim=2, cp_group=self.net.cp_group)
x_sigma_max = rearrange(x_sigma_max, "(B V) C T H W -> B C (V T) H W", V=self.n_views)
samples = self.sampler(
x0_fn, x_sigma_max, num_steps=num_steps, sigma_max=self.sde.sigma_max, solver_option=solver_option
)
if self.net.is_context_parallel_enabled:
samples = rearrange(samples, "B C (V T) H W -> (B V) C T H W", V=self.n_views)
samples = cat_outputs_cp(samples, seq_dim=2, cp_group=self.net.cp_group)
samples = rearrange(samples, "(B V) C T H W -> B C (V T) H W", V=self.n_views)
return samples
def get_x0_fn_from_batch(
self,
data_batch: Dict,
guidance: float = 1.5,
is_negative_prompt: bool = False,
guidance_other: Union[float, None] = None,
) -> Callable:
"""
Generates a callable function `x0_fn` based on the provided data batch and guidance factor.
This function first processes the input data batch through a conditioning workflow (`conditioner`) to obtain conditioned and unconditioned states. It then defines a nested function `x0_fn` which applies a denoising operation on an input `noise_x` at a given noise level `sigma` using both the conditioned and unconditioned states.
Args:
- data_batch (Dict): A batch of data used for conditioning. The format and content of this dictionary should align with the expectations of the `self.conditioner`
- guidance (float, optional): A scalar value that modulates the influence of the conditioned state relative to the unconditioned state in the output. Defaults to 1.5.
- is_negative_prompt (bool): use negative prompt t5 in uncondition if true
Returns:
- Callable: A function `x0_fn(noise_x, sigma)` that takes two arguments, `noise_x` and `sigma`, and return x0 predictoin
The returned function is suitable for use in scenarios where a denoised state is required based on both conditioned and unconditioned inputs, with an adjustable level of guidance influence.
"""
if is_negative_prompt:
condition, uncondition = self.conditioner.get_condition_with_negative_prompt(data_batch)
else:
condition, uncondition = self.conditioner.get_condition_uncondition(data_batch)
to_cp = self.net.is_context_parallel_enabled
# For inference, check if parallel_state is initialized
if parallel_state.is_initialized():
condition = broadcast_condition(condition, to_tp=True, to_cp=to_cp)
uncondition = broadcast_condition(uncondition, to_tp=True, to_cp=to_cp)
else:
assert not to_cp, "parallel_state is not initialized, context parallel should be turned off."
if guidance_other is not None:
# assume this is for inference time trajectory guidance for now
assert not parallel_state.is_initialized(), "Parallel state not supported with two guidances."
condition_other = copy.deepcopy(uncondition)
condition_other.trajectory = condition.trajectory
def x0_fn(noise_x: torch.Tensor, sigma: torch.Tensor) -> torch.Tensor:
cond_x0 = self.denoise(noise_x, sigma, condition).x0
uncond_x0 = self.denoise(noise_x, sigma, uncondition).x0
cond_other_x0 = self.denoise(noise_x, sigma, condition_other).x0
raw_x0 = cond_x0 + guidance * (cond_x0 - uncond_x0) + guidance_other * (cond_other_x0 - uncond_x0)
if "guided_image" in data_batch:
assert False, "not supported"
return raw_x0
else:
def x0_fn(noise_x: torch.Tensor, sigma: torch.Tensor) -> torch.Tensor:
cond_x0 = self.denoise(noise_x, sigma, condition).x0
uncond_x0 = self.denoise(noise_x, sigma, uncondition).x0
raw_x0 = cond_x0 + guidance * (cond_x0 - uncond_x0)
if "guided_image" in data_batch:
# replacement trick that enables inpainting with base model
assert "guided_mask" in data_batch, "guided_mask should be in data_batch if guided_image is present"
guide_image = data_batch["guided_image"]
guide_mask = data_batch["guided_mask"]
raw_x0 = guide_mask * guide_image + (1 - guide_mask) * raw_x0
return raw_x0
return x0_fn
@diffusion_fsdp_class_decorator
class FSDPDiffusionModel(MultiviewDiffusionModel):
pass