Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Literal, Optional | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from einops import rearrange, repeat | |
from torch import nn | |
from torch.distributed import ProcessGroup, get_process_group_ranks | |
from cosmos_predict1.diffusion.module.attention import normalize | |
from cosmos_predict1.diffusion.module.timm import trunc_normal_ | |
from cosmos_predict1.diffusion.training.context_parallel import split_inputs_cp | |
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): | |
""" | |
embed_dim: output dimension for each position | |
pos: a list of positions to be encoded: size (M,) | |
out: (M, D) | |
""" | |
assert embed_dim % 2 == 0 | |
omega = np.arange(embed_dim // 2, dtype=np.float64) | |
omega /= embed_dim / 2.0 | |
omega = 1.0 / 10000**omega # (D/2,) | |
pos = pos.reshape(-1) # (M,) | |
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product | |
emb_sin = np.sin(out) # (M, D/2) | |
emb_cos = np.cos(out) # (M, D/2) | |
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) | |
return emb | |
def get_3d_sincos_pos_embed( | |
embed_dim, | |
grid_size_h, | |
grid_size_w, | |
grid_size_t, | |
spatial_interpolation_scale, | |
temporal_interpolation_scale, | |
concat=True, | |
): | |
grid_h = np.arange(grid_size_h, dtype=np.float32) / spatial_interpolation_scale | |
grid_w = np.arange(grid_size_w, dtype=np.float32) / spatial_interpolation_scale | |
grid_t = np.arange(grid_size_t, dtype=np.float32) / temporal_interpolation_scale | |
grid = np.meshgrid(grid_w, grid_h, grid_t, indexing="ij") | |
grid = np.stack(grid, axis=0) | |
grid = grid.reshape(3, 1, grid_size_h, grid_size_w, grid_size_t) | |
if concat: | |
per_axis = embed_dim // 3 | |
per_axis = (per_axis // 2) * 2 # make it even (for sin/cos split) | |
dim_h, dim_w = per_axis, per_axis | |
dim_t = embed_dim - dim_h - dim_w | |
emb_h = get_1d_sincos_pos_embed_from_grid(dim_h, grid[0]) # (H*W, D/3) | |
emb_w = get_1d_sincos_pos_embed_from_grid(dim_w, grid[1]) # (H*W, D/3) | |
emb_t = get_1d_sincos_pos_embed_from_grid(dim_t, grid[2]) # (H*W, D/3) | |
return np.concatenate([emb_h, emb_w, emb_t], axis=1) # (H*W*T, D) | |
else: | |
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim, grid[0]) # (H*W) | |
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim, grid[1]) # (H*W) | |
emb_t = get_1d_sincos_pos_embed_from_grid(embed_dim, grid[2]) # (H*W) | |
return emb_h + emb_w + emb_t # (H*W*T, D) | |
class VideoPositionEmb(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.cp_group = None | |
def enable_context_parallel(self, cp_group: ProcessGroup): | |
self.cp_group = cp_group | |
def disable_context_parallel(self): | |
self.cp_group = None | |
def forward(self, x_B_T_H_W_C: torch.Tensor, fps=Optional[torch.Tensor]) -> torch.Tensor: | |
""" | |
With CP, the function assume that the input tensor is already split. It delegates the embedding generation to generate_embeddings function. | |
""" | |
B_T_H_W_C = x_B_T_H_W_C.shape | |
if self.cp_group is not None: | |
cp_ranks = get_process_group_ranks(self.cp_group) | |
cp_size = len(cp_ranks) | |
B, T, H, W, C = B_T_H_W_C | |
B_T_H_W_C = (B, T * cp_size, H, W, C) | |
embeddings = self.generate_embeddings(B_T_H_W_C, fps=fps) | |
if self.cp_group is not None: | |
if isinstance(self, VideoRopePosition3DEmb): | |
seq_dim = 0 | |
else: | |
seq_dim = 1 | |
embeddings = split_inputs_cp(x=embeddings, seq_dim=seq_dim, cp_group=self.cp_group) | |
return embeddings | |
def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor]): | |
raise NotImplementedError | |
class SinCosPosEmb(VideoPositionEmb): | |
def __init__( | |
self, | |
*, # enforce keyword arguments | |
model_channels: int, | |
len_h: int, | |
len_w: int, | |
len_t: int, | |
is_learnable: bool = False, | |
interpolation: Literal["crop", "resize", "crop_resize"] = "crop", | |
spatial_interpolation_scale=1.0, | |
temporal_interpolation_scale=1.0, | |
init_length_for_resize: int = 16, | |
**kwargs, | |
): | |
""" | |
Args: | |
interpolation (str): "crop", "resize", "crop_resize". "crop" means we crop the positional embedding to the length of the input sequence. "resize" means we resize the positional embedding to the length of the input sequence. "crop_resize" (inference only) means we first crop the positional embedding to init_length_for_resize, then resize it to the length of the input sequence. | |
init_length_for_resize (int): used when interpolation is "crop_resize", where we "resize" embedding during inference for model trained with "crop". We first "crop" the pos_embed to this length (used during training), then run the "resize", default 16 | |
""" | |
del kwargs # unused | |
super().__init__() | |
self.interpolation = interpolation | |
self.init_length_for_resize = init_length_for_resize | |
param = get_3d_sincos_pos_embed( | |
model_channels, len_h, len_w, len_t, spatial_interpolation_scale, temporal_interpolation_scale | |
) | |
param = rearrange(param, "(h w t) c -> 1 t h w c", h=len_h, w=len_w) | |
if is_learnable: | |
self.pos_embed = nn.Parameter( | |
torch.from_numpy(param).float(), | |
) | |
else: | |
self.register_buffer("pos_embed", torch.from_numpy(param).float(), persistent=False) | |
def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor]) -> torch.Tensor: | |
B, T, H, W, C = B_T_H_W_C | |
if self.interpolation == "crop": | |
return self.pos_embed[:, :T, :H, :W] | |
if self.interpolation == "resize": | |
return rearrange( | |
F.interpolate( | |
rearrange(self.pos_embed, "1 t h w c -> 1 c h w t"), | |
size=(H, W, T), | |
mode="linear", | |
align_corners=False, | |
), | |
"1 c h w t -> 1 t h w c", | |
) | |
if self.interpolation == "crop_resize": | |
pos_embed_crop = self.pos_embed[:, : self.init_length_for_resize, :H, :W] # B,T,H,W,C | |
_, t, h, w, c = pos_embed_crop.shape | |
pos_embed_crop_resize_t = rearrange( | |
F.interpolate( | |
rearrange(pos_embed_crop, "1 t h w c -> 1 (c h w) t"), | |
size=(T), | |
mode="linear", | |
), | |
"1 (c h w) t -> 1 t h w c", | |
c=c, | |
h=h, | |
w=w, | |
) | |
pos_embed_crop_resize = rearrange( | |
F.interpolate( | |
rearrange(pos_embed_crop_resize_t, "1 t h w c -> 1 (c t) h w"), | |
size=(H, W), | |
mode="bilinear", | |
), | |
"1 (c t) h w -> 1 t h w c", | |
c=c, | |
) | |
return pos_embed_crop_resize | |
raise ValueError(f"Unknown interpolation method {self.interpolation}") | |
class SinCosPosEmb_FPS_Aware(VideoPositionEmb): | |
def __init__( | |
self, | |
*, # enforce keyword arguments | |
model_channels: int, | |
len_h: int, | |
len_w: int, | |
len_t: int, | |
min_fps: int, # 1 for getty video | |
max_fps: int, # 120 for getty video | |
is_learnable: bool = False, | |
interpolation: str = "crop", | |
spatial_interpolation_scale=1.0, | |
temporal_interpolation_scale=1.0, | |
**kwargs, # used for compatibility with other positional embeddings; unused in this class | |
): | |
del kwargs # unused | |
super().__init__() | |
self.interpolation = interpolation | |
self.max_fps = max_fps | |
self.min_fps = min_fps | |
if self.interpolation == "crop": | |
param = get_3d_sincos_pos_embed( | |
model_channels, | |
len_h, | |
len_w, | |
len_t * int(max_fps / min_fps), | |
spatial_interpolation_scale, | |
temporal_interpolation_scale, | |
) # should be max_seq_length * (max_fps / min_fps) | |
elif self.interpolation == "resize": | |
param = get_3d_sincos_pos_embed( | |
model_channels, len_h, len_w, len_t, spatial_interpolation_scale, temporal_interpolation_scale | |
) # time embedding based min fps | |
else: | |
ValueError(f"Unknown interpolation method {self.interpolation}") | |
param = rearrange(param, "(h w t) c -> 1 t h w c", h=len_h, w=len_w) | |
if is_learnable: | |
self.pos_embed = nn.Parameter( | |
torch.from_numpy(param).float(), | |
) | |
else: | |
self.register_buffer("pos_embed", torch.from_numpy(param).float(), persistent=False) | |
def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor]) -> torch.Tensor: | |
B, T, H, W, C = B_T_H_W_C | |
if self.interpolation == "crop": | |
if T > 1: | |
return torch.cat( | |
[ | |
self.pos_embed[:, : (int(self.max_fps / curr_fps) * T) : int(self.max_fps / curr_fps), :H, :W] | |
for curr_fps in fps | |
], | |
0, | |
) | |
else: | |
return self.pos_embed[:, :T, :H, :W] # image model | |
elif self.interpolation == "resize": | |
if T > 1: | |
return torch.cat( | |
[ | |
rearrange( | |
F.interpolate( | |
rearrange(self.pos_embed, "1 t h w c -> 1 c h w t"), | |
size=(H, W, T * int(curr_fps / self.min_fps)), | |
mode="trilinear", | |
align_corners=True, # important: align corner need to be true | |
)[:, :, :H, :W, :T], | |
"1 c h w t -> 1 t h w c", | |
) | |
for curr_fps in fps | |
], | |
0, | |
) | |
else: | |
# grab self.pos_embed at time step 0 and resize spatially | |
return rearrange( | |
F.interpolate( | |
rearrange(self.pos_embed[:, 0, ::], "1 h w c -> 1 c h w"), | |
size=(H, W), | |
mode="bilinear", | |
align_corners=True, | |
), | |
"1 c h w -> 1 h w c", | |
) | |
raise ValueError(f"Unknown interpolation method {self.interpolation}") | |
class LearnableEmb3D(VideoPositionEmb): | |
def __init__( | |
self, | |
*, # enforce keyword arguments | |
model_channels: int, | |
len_h: int, | |
len_w: int, | |
len_t: int, | |
interpolation: str = "crop", | |
is_learnable: bool = True, | |
**kwargs, # used for compatibility with other positional embeddings; unused in this class | |
): | |
del kwargs # unused | |
super().__init__() | |
assert is_learnable is True | |
self.interpolation = interpolation | |
self.pos_embed = nn.Parameter(torch.zeros(1, len_t, len_h, len_w, model_channels)) | |
trunc_normal_(self.pos_embed, std=0.02) | |
def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor]) -> torch.Tensor: | |
B, T, H, W, C = B_T_H_W_C | |
if self.interpolation == "crop": | |
return self.pos_embed[:, :T, :H, :W] | |
if self.interpolation == "resize": | |
return rearrange( | |
F.interpolate( | |
rearrange(self.pos_embed, "1 t h w c -> 1 c h w t"), | |
size=(H, W, T), | |
mode="linear", | |
align_corners=False, | |
), | |
"1 c h w t -> 1 t h w c", | |
) | |
raise ValueError(f"Unknown interpolation method {self.interpolation}") | |
class LearnableEmb3D_FPS_Aware(VideoPositionEmb): | |
def __init__( | |
self, | |
*, # enforce keyword arguments | |
model_channels: int, | |
len_h: int, | |
len_w: int, | |
len_t: int, | |
min_fps: int, # 1 for getty video | |
max_fps: int, # 120 for getty video | |
interpolation: str = "crop", | |
is_learnable: bool = True, | |
**kwargs, # used for compatibility with other positional embeddings; unused in this class | |
): | |
del kwargs | |
super().__init__() | |
assert is_learnable is True | |
self.interpolation = interpolation | |
self.max_fps = max_fps | |
self.min_fps = min_fps | |
if self.interpolation == "crop": | |
self.pos_embed = nn.Parameter( | |
torch.zeros(1, len_t * int(max_fps / min_fps), len_h, len_w, model_channels) | |
) # should be max_seq_length * (max_fps / min_fps) | |
elif self.interpolation == "resize": | |
self.pos_embed = nn.Parameter( | |
torch.zeros(1, len_t, len_h, len_w, model_channels) | |
) # time embedding based min fps | |
else: | |
ValueError(f"Unknown interpolation method {self.interpolation}") | |
trunc_normal_(self.pos_embed, std=0.02) | |
def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor]) -> torch.Tensor: | |
B, T, H, W, C = B_T_H_W_C | |
if self.interpolation == "crop": | |
if T > 1: | |
return torch.cat( | |
[ | |
self.pos_embed[:, : (int(self.max_fps / curr_fps) * T) : int(self.max_fps / curr_fps), :H, :W] | |
for curr_fps in fps | |
], | |
0, | |
) | |
else: | |
return self.pos_embed[:, :T, :H, :W] # image model | |
elif self.interpolation == "resize": | |
if T > 1: | |
return torch.cat( | |
[ | |
rearrange( | |
F.interpolate( | |
rearrange(self.pos_embed, "1 t h w c -> 1 c h w t"), | |
size=(H, W, T * int(curr_fps / self.min_fps)), | |
mode="trilinear", | |
align_corners=True, # important: align corner need to be true | |
)[:, :, :H, :W, :T], | |
"1 c h w t -> 1 t h w c", | |
) | |
for curr_fps in fps | |
], | |
0, | |
) | |
else: | |
# grab self.pos_embed at time step 0 and resize spatially | |
return rearrange( | |
F.interpolate( | |
rearrange(self.pos_embed[:, 0, ::], "1 h w c -> 1 c h w"), | |
size=(H, W), | |
mode="bilinear", | |
align_corners=True, | |
), | |
"1 c h w -> 1 h w c", | |
) | |
raise ValueError(f"Unknown interpolation method {self.interpolation}") | |
class VideoRopePositionEmb(VideoPositionEmb): | |
def __init__( | |
self, | |
*, # enforce keyword arguments | |
head_dim: int, | |
len_h: int, | |
len_w: int, | |
len_t: int, | |
**kwargs, # used for compatibility with other positional embeddings; unused in this class | |
): | |
del kwargs | |
super().__init__() | |
self.register_buffer("seq", torch.arange(len_h * len_w * len_t, dtype=torch.float)) | |
self.register_buffer( | |
"dim_range", torch.arange(0, head_dim, 2)[: (head_dim // 2)].float().cuda() / head_dim, persistent=False | |
) | |
def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor], ntk_factor: float = 1.0): | |
theta = 10000.0 * ntk_factor | |
# original_dtype = self.dim_range.dtype | |
freq = 1.0 / (theta ** self.dim_range.float()) | |
_, T, H, W, _ = B_T_H_W_C | |
length = T * H * W | |
emb_L_D = torch.outer(self.seq[:length], freq) | |
return rearrange(torch.cat([emb_L_D, emb_L_D], dim=-1), "l d -> l 1 1 d").float() | |
class VideoRopePosition3DEmb(VideoPositionEmb): | |
def __init__( | |
self, | |
*, # enforce keyword arguments | |
head_dim: int, | |
len_h: int, | |
len_w: int, | |
len_t: int, | |
base_fps: int = 24, | |
h_extrapolation_ratio: float = 1.0, | |
w_extrapolation_ratio: float = 1.0, | |
t_extrapolation_ratio: float = 1.0, | |
**kwargs, # used for compatibility with other positional embeddings; unused in this class | |
): | |
del kwargs | |
super().__init__() | |
self.register_buffer("seq", torch.arange(max(len_h, len_w, len_t), dtype=torch.float)) | |
self.base_fps = base_fps | |
self.max_h = len_h | |
self.max_w = len_w | |
self.max_t = len_t | |
dim = head_dim | |
dim_h = dim // 6 * 2 | |
dim_w = dim_h | |
dim_t = dim - 2 * dim_h | |
assert dim == dim_h + dim_w + dim_t, f"bad dim: {dim} != {dim_h} + {dim_w} + {dim_t}" | |
self.register_buffer( | |
"dim_spatial_range", | |
torch.arange(0, dim_h, 2)[: (dim_h // 2)].float() / dim_h, | |
persistent=False, | |
) | |
self.register_buffer( | |
"dim_temporal_range", | |
torch.arange(0, dim_t, 2)[: (dim_t // 2)].float() / dim_t, | |
persistent=False, | |
) | |
self.h_ntk_factor = h_extrapolation_ratio ** (dim_h / (dim_h - 2)) | |
self.w_ntk_factor = w_extrapolation_ratio ** (dim_w / (dim_w - 2)) | |
self.t_ntk_factor = t_extrapolation_ratio ** (dim_t / (dim_t - 2)) | |
self._dim_h = dim_h | |
self._dim_t = dim_t | |
def reset_parameters(self) -> None: | |
if self.dim_spatial_range.device == torch.device("meta"): | |
return | |
dim_h = self._dim_h | |
dim_t = self._dim_t | |
self.seq = torch.arange(max(self.max_h, self.max_w, self.max_t)).float().to(self.dim_spatial_range.device) | |
self.dim_spatial_range = ( | |
torch.arange(0, dim_h, 2)[: (dim_h // 2)].float().to(self.dim_spatial_range.device) / dim_h | |
) | |
self.dim_temporal_range = ( | |
torch.arange(0, dim_t, 2)[: (dim_t // 2)].float().to(self.dim_spatial_range.device) / dim_t | |
) | |
def generate_embeddings( | |
self, | |
B_T_H_W_C: torch.Size, | |
fps: Optional[torch.Tensor] = None, | |
h_ntk_factor: Optional[float] = None, | |
w_ntk_factor: Optional[float] = None, | |
t_ntk_factor: Optional[float] = None, | |
): | |
""" | |
Generate embeddings for the given input size. | |
Args: | |
B_T_H_W_C (torch.Size): Input tensor size (Batch, Time, Height, Width, Channels). | |
fps (Optional[torch.Tensor], optional): Frames per second. Defaults to None. | |
h_ntk_factor (Optional[float], optional): Height NTK factor. If None, uses self.h_ntk_factor. Defaults to None. | |
w_ntk_factor (Optional[float], optional): Width NTK factor. If None, uses self.w_ntk_factor. Defaults to None. | |
t_ntk_factor (Optional[float], optional): Time NTK factor. If None, uses self.t_ntk_factor. Defaults to None. | |
Returns: | |
Not specified in the original code snippet. | |
""" | |
h_ntk_factor = h_ntk_factor if h_ntk_factor is not None else self.h_ntk_factor | |
w_ntk_factor = w_ntk_factor if w_ntk_factor is not None else self.w_ntk_factor | |
t_ntk_factor = t_ntk_factor if t_ntk_factor is not None else self.t_ntk_factor | |
h_theta = 10000.0 * h_ntk_factor | |
w_theta = 10000.0 * w_ntk_factor | |
t_theta = 10000.0 * t_ntk_factor | |
h_spatial_freqs = 1.0 / (h_theta**self.dim_spatial_range) | |
w_spatial_freqs = 1.0 / (w_theta**self.dim_spatial_range) | |
temporal_freqs = 1.0 / (t_theta**self.dim_temporal_range) | |
B, T, H, W, _ = B_T_H_W_C | |
uniform_fps = (fps is None) or (fps.min() == fps.max()) | |
assert ( | |
uniform_fps or B == 1 or T == 1 | |
), "For video batch, batch size should be 1 for non-uniform fps. For image batch, T should be 1" | |
assert ( | |
H <= self.max_h and W <= self.max_w | |
), f"Input dimensions (H={H}, W={W}) exceed the maximum dimensions (max_h={self.max_h}, max_w={self.max_w}) configured for positional embedding. Please adjust the input size or increase the maximum dimensions in the model configuration." | |
half_emb_h = torch.outer(self.seq[:H], h_spatial_freqs) | |
half_emb_w = torch.outer(self.seq[:W], w_spatial_freqs) | |
# apply sequence scaling in temporal dimension | |
if fps is None: # image case | |
assert T == 1, "T should be 1 for image batch." | |
half_emb_t = torch.outer(self.seq[:T], temporal_freqs) | |
else: | |
half_emb_t = torch.outer(self.seq[:T] / fps[:1] * self.base_fps, temporal_freqs) | |
em_T_H_W_D = torch.cat( | |
[ | |
repeat(half_emb_t, "t d -> t h w d", h=H, w=W), | |
repeat(half_emb_h, "h d -> t h w d", t=T, w=W), | |
repeat(half_emb_w, "w d -> t h w d", t=T, h=H), | |
] | |
* 2, | |
dim=-1, | |
) | |
return rearrange(em_T_H_W_D, "t h w d -> (t h w) 1 1 d").float() | |
class SinCosPosEmbAxis(VideoPositionEmb): | |
def __init__( | |
self, | |
*, # enforce keyword arguments | |
interpolation: str, | |
model_channels: int, | |
len_h: int, | |
len_w: int, | |
len_t: int, | |
h_extrapolation_ratio: float = 1.0, | |
w_extrapolation_ratio: float = 1.0, | |
t_extrapolation_ratio: float = 1.0, | |
**kwargs, | |
): | |
""" | |
Args: | |
interpolation (str): we curretly only support "crop", ideally when we need extrapolation capacity, we should adjust frequency or other more advanced methods. they are not implemented yet. | |
""" | |
del kwargs # unused | |
super().__init__() | |
self.interpolation = interpolation | |
assert self.interpolation in ["crop"], f"Unknown interpolation method {self.interpolation}" | |
dim = model_channels | |
dim_h = dim // 6 * 2 | |
dim_w = dim_h | |
dim_t = dim - 2 * dim_h | |
assert dim == dim_h + dim_w + dim_t, f"bad dim: {dim} != {dim_h} + {dim_w} + {dim_t}" | |
# rescale pos id is equivalent to rescale frequency | |
emb_h = get_1d_sincos_pos_embed_from_grid(dim_h, pos=np.arange(len_h) * 1.0 / h_extrapolation_ratio) | |
emb_w = get_1d_sincos_pos_embed_from_grid(dim_w, pos=np.arange(len_w) * 1.0 / w_extrapolation_ratio) | |
emb_t = get_1d_sincos_pos_embed_from_grid(dim_t, pos=np.arange(len_t) * 1.0 / t_extrapolation_ratio) | |
self.register_buffer("pos_emb_h", torch.from_numpy(emb_h).float(), persistent=False) | |
self.register_buffer("pos_emb_w", torch.from_numpy(emb_w).float(), persistent=False) | |
self.register_buffer("pos_emb_t", torch.from_numpy(emb_t).float(), persistent=False) | |
def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor]) -> torch.Tensor: | |
B, T, H, W, C = B_T_H_W_C | |
if self.interpolation == "crop": | |
emb_h_H = self.pos_emb_h[:H] | |
emb_w_W = self.pos_emb_w[:W] | |
emb_t_T = self.pos_emb_t[:T] | |
emb = torch.cat( | |
[ | |
repeat(emb_t_T, "t d-> b t h w d", b=B, h=H, w=W), | |
repeat(emb_h_H, "h d-> b t h w d", b=B, t=T, w=W), | |
repeat(emb_w_W, "w d-> b t h w d", b=B, t=T, h=H), | |
], | |
dim=-1, | |
) | |
assert list(emb.shape)[:4] == [B, T, H, W], f"bad shape: {list(emb.shape)[:4]} != {B, T, H, W}" | |
return emb | |
raise ValueError(f"Unknown interpolation method {self.interpolation}") | |
class LearnablePosEmbAxis(VideoPositionEmb): | |
def __init__( | |
self, | |
*, # enforce keyword arguments | |
interpolation: str, | |
model_channels: int, | |
len_h: int, | |
len_w: int, | |
len_t: int, | |
**kwargs, | |
): | |
""" | |
Args: | |
interpolation (str): we curretly only support "crop", ideally when we need extrapolation capacity, we should adjust frequency or other more advanced methods. they are not implemented yet. | |
""" | |
del kwargs # unused | |
super().__init__() | |
self.interpolation = interpolation | |
assert self.interpolation in ["crop"], f"Unknown interpolation method {self.interpolation}" | |
self.pos_emb_h = nn.Parameter(torch.zeros(len_h, model_channels)) | |
self.pos_emb_w = nn.Parameter(torch.zeros(len_w, model_channels)) | |
self.pos_emb_t = nn.Parameter(torch.zeros(len_t, model_channels)) | |
trunc_normal_(self.pos_emb_h, std=0.02) | |
trunc_normal_(self.pos_emb_w, std=0.02) | |
trunc_normal_(self.pos_emb_t, std=0.02) | |
def reset_parameters(self): | |
if self.pos_emb_h.device == torch.device("meta"): | |
return | |
trunc_normal_(self.pos_emb_h, std=0.02) | |
trunc_normal_(self.pos_emb_w, std=0.02) | |
trunc_normal_(self.pos_emb_t, std=0.02) | |
def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor]) -> torch.Tensor: | |
B, T, H, W, _ = B_T_H_W_C | |
if self.interpolation == "crop": | |
emb_h_H = self.pos_emb_h[:H] | |
emb_w_W = self.pos_emb_w[:W] | |
emb_t_T = self.pos_emb_t[:T] | |
emb = ( | |
repeat(emb_t_T, "t d-> b t h w d", b=B, h=H, w=W) | |
+ repeat(emb_h_H, "h d-> b t h w d", b=B, t=T, w=W) | |
+ repeat(emb_w_W, "w d-> b t h w d", b=B, t=T, h=H) | |
) | |
assert list(emb.shape)[:4] == [B, T, H, W], f"bad shape: {list(emb.shape)[:4]} != {B, T, H, W}" | |
else: | |
raise ValueError(f"Unknown interpolation method {self.interpolation}") | |
return normalize(emb, dim=-1, eps=1e-6) | |
class MultiviewVideoPositionEmb(nn.Module): | |
def __init__( | |
self, | |
): | |
super().__init__() | |
self.cp_group = None | |
def enable_context_parallel(self, cp_group: ProcessGroup): | |
self.cp_group = cp_group | |
def disable_context_parallel(self): | |
self.cp_group = None | |
def forward(self, x_B_T_H_W_C: torch.Tensor, fps=Optional[torch.Tensor]) -> torch.Tensor: | |
""" | |
With CP, the function assume that the input tensor is already split. It delegates the embedding generation to generate_embeddings function. | |
""" | |
B_T_H_W_C = x_B_T_H_W_C.shape | |
if self.cp_group is not None: | |
cp_ranks = get_process_group_ranks(self.cp_group) | |
cp_size = len(cp_ranks) | |
B, T, H, W, C = B_T_H_W_C | |
B_T_H_W_C = (B, T * cp_size, H, W, C) | |
embeddings = self.generate_embeddings(B_T_H_W_C, fps=fps) | |
if self.cp_group is not None: | |
if isinstance(self, MultiviewVideoRopePosition3DEmb): | |
seq_dim = 1 | |
embeddings = rearrange(embeddings, "(V T) H W D -> V (T H W) 1 1 D", V=self.n_views).float() | |
# rearrange(em_T_H_W_D, "t h w d -> (t h w) 1 1 d").float() | |
embeddings = split_inputs_cp(x=embeddings, seq_dim=seq_dim, cp_group=self.cp_group) | |
embeddings = rearrange(embeddings, "V T 1 1 D -> (V T) 1 1 D", V=self.n_views).float() | |
else: | |
seq_dim = 1 | |
embeddings = rearrange(embeddings, "B (V T) H W C -> (B V) T H W C", V=self.n_views) | |
embeddings = split_inputs_cp(x=embeddings, seq_dim=seq_dim, cp_group=self.cp_group) | |
embeddings = rearrange(embeddings, "(B V) T H W C -> B (V T) H W C", V=self.n_views) | |
else: | |
if isinstance(self, MultiviewVideoRopePosition3DEmb): | |
embeddings = rearrange(embeddings, "t h w d -> (t h w) 1 1 d").float() | |
return embeddings | |
def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor]): | |
raise NotImplementedError | |
class MultiviewVideoRopePosition3DEmb(MultiviewVideoPositionEmb): | |
def __init__( | |
self, | |
*, # enforce keyword arguments | |
head_dim: int, | |
len_h: int, | |
len_w: int, | |
len_t: int, | |
base_fps: int = 24, | |
h_extrapolation_ratio: float = 1.0, | |
w_extrapolation_ratio: float = 1.0, | |
t_extrapolation_ratio: float = 1.0, | |
n_views: int = 4, | |
**kwargs, # used for compatibility with other positional embeddings; unused in this class | |
): | |
del kwargs | |
super().__init__() | |
self.register_buffer("seq", torch.arange(max(len_h, len_w, len_t), dtype=torch.float)) | |
self.base_fps = base_fps | |
self.max_h = len_h | |
self.max_w = len_w | |
self.n_views = n_views | |
dim = head_dim | |
dim_h = dim // 6 * 2 | |
dim_w = dim_h | |
dim_t = dim - 2 * dim_h | |
assert dim == dim_h + dim_w + dim_t, f"bad dim: {dim} != {dim_h} + {dim_w} + {dim_t}" | |
self.register_buffer( | |
"dim_spatial_range", | |
torch.arange(0, dim_h, 2)[: (dim_h // 2)].float().cuda() / dim_h, | |
persistent=False, | |
) | |
self.register_buffer( | |
"dim_temporal_range", | |
torch.arange(0, dim_t, 2)[: (dim_t // 2)].float().cuda() / dim_t, | |
persistent=False, | |
) | |
self.h_ntk_factor = h_extrapolation_ratio ** (dim_h / (dim_h - 2)) | |
self.w_ntk_factor = w_extrapolation_ratio ** (dim_w / (dim_w - 2)) | |
self.t_ntk_factor = t_extrapolation_ratio ** (dim_t / (dim_t - 2)) | |
def generate_embedding_for_batch( | |
self, | |
B_T_H_W_C: torch.Size, | |
fps: Optional[torch.Tensor] = None, | |
h_ntk_factor: Optional[float] = None, | |
w_ntk_factor: Optional[float] = None, | |
t_ntk_factor: Optional[float] = None, | |
): | |
""" | |
Generate embeddings for the given input size. | |
Args: | |
B_T_H_W_C (torch.Size): Input tensor size (Batch, Time, Height, Width, Channels). | |
fps (Optional[torch.Tensor], optional): Frames per second. Defaults to None. | |
h_ntk_factor (Optional[float], optional): Height NTK factor. If None, uses self.h_ntk_factor. Defaults to None. | |
w_ntk_factor (Optional[float], optional): Width NTK factor. If None, uses self.w_ntk_factor. Defaults to None. | |
t_ntk_factor (Optional[float], optional): Time NTK factor. If None, uses self.t_ntk_factor. Defaults to None. | |
Returns: | |
Not specified in the original code snippet. | |
""" | |
h_ntk_factor = h_ntk_factor if h_ntk_factor is not None else self.h_ntk_factor | |
w_ntk_factor = w_ntk_factor if w_ntk_factor is not None else self.w_ntk_factor | |
t_ntk_factor = t_ntk_factor if t_ntk_factor is not None else self.t_ntk_factor | |
h_theta = 10000.0 * h_ntk_factor | |
w_theta = 10000.0 * w_ntk_factor | |
t_theta = 10000.0 * t_ntk_factor | |
h_spatial_freqs = 1.0 / (h_theta**self.dim_spatial_range) | |
w_spatial_freqs = 1.0 / (w_theta**self.dim_spatial_range) | |
temporal_freqs = 1.0 / (t_theta**self.dim_temporal_range) | |
B, T, H, W, _ = B_T_H_W_C | |
uniform_fps = (fps is None) or (fps.min() == fps.max()) | |
assert uniform_fps # only support uniform fps now | |
assert ( | |
uniform_fps or B == 1 or T == 1 | |
), "For video batch, batch size should be 1 for non-uniform fps. For image batch, T should be 1" | |
assert ( | |
H <= self.max_h and W <= self.max_w | |
), f"Input dimensions (H={H}, W={W}) exceed the maximum dimensions (max_h={self.max_h}, max_w={self.max_w}) configured for positional embedding. Please adjust the input size or increase the maximum dimensions in the model configuration." | |
half_emb_h = torch.outer(self.seq[:H], h_spatial_freqs) | |
half_emb_w = torch.outer(self.seq[:W], w_spatial_freqs) | |
# apply sequence scaling in temporal dimension | |
if fps is None: # image case | |
assert T == 1, "T should be 1 for image batch." | |
half_emb_t = torch.outer(self.seq[:T], temporal_freqs) | |
else: | |
half_emb_t = torch.outer(self.seq[:T] / fps[:1] * self.base_fps, temporal_freqs) | |
em_T_H_W_D = torch.cat( | |
[ | |
repeat(half_emb_t, "t d -> t h w d", h=H, w=W), | |
repeat(half_emb_h, "h d -> t h w d", t=T, w=W), | |
repeat(half_emb_w, "w d -> t h w d", t=T, h=H), | |
] | |
* 2, | |
dim=-1, | |
) | |
return em_T_H_W_D | |
def generate_embeddings( | |
self, | |
B_T_H_W_C: torch.Size, | |
fps: Optional[torch.Tensor] = None, | |
h_ntk_factor: Optional[float] = None, | |
w_ntk_factor: Optional[float] = None, | |
t_ntk_factor: Optional[float] = None, | |
): | |
""" | |
Generate embeddings for the given input size. The camera view dimension is merged in the T dimension | |
Args: | |
B_T_H_W_C (torch.Size): Input tensor size (Batch, Time * Views, Height, Width, Channels). | |
fps (Optional[torch.Tensor], optional): Frames per second. Defaults to None. | |
h_ntk_factor (Optional[float], optional): Height NTK factor. If None, uses self.h_ntk_factor. Defaults to None. | |
w_ntk_factor (Optional[float], optional): Width NTK factor. If None, uses self.w_ntk_factor. Defaults to None. | |
t_ntk_factor (Optional[float], optional): Time NTK factor. If None, uses self.t_ntk_factor. Defaults to None. | |
Returns: | |
Not specified in the original code snippet. | |
""" | |
B, T, H, W, C = B_T_H_W_C | |
single_view_B_T_H_W_C = (B, T // self.n_views, H, W, C) | |
em_T_H_W_D = torch.cat( | |
[ | |
self.generate_embedding_for_batch( | |
single_view_B_T_H_W_C, | |
fps=fps, | |
h_ntk_factor=h_ntk_factor, | |
w_ntk_factor=w_ntk_factor, | |
t_ntk_factor=t_ntk_factor, | |
) | |
for item in range(self.n_views) | |
], | |
dim=0, | |
) | |
return em_T_H_W_D | |
# return rearrange(em_T_H_W_D, "t h w d -> (t h w) 1 1 d").float() | |
class MultiviewSinCosPosEmbAxis(MultiviewVideoPositionEmb): | |
def __init__( | |
self, | |
*, # enforce keyword arguments | |
interpolation: str, | |
model_channels: int, | |
len_h: int, | |
len_w: int, | |
len_t: int, | |
h_extrapolation_ratio: float = 1.0, | |
w_extrapolation_ratio: float = 1.0, | |
t_extrapolation_ratio: float = 1.0, | |
n_views: int = 4, | |
**kwargs, | |
): | |
""" | |
Args: | |
interpolation (str): we curretly only support "crop", ideally when we need extrapolation capacity, we should adjust frequency or other more advanced methods. they are not implemented yet. | |
""" | |
del kwargs # unused | |
self.n_views = n_views | |
super().__init__() | |
self.interpolation = interpolation | |
assert self.interpolation in ["crop"], f"Unknown interpolation method {self.interpolation}" | |
dim = model_channels | |
dim_h = dim // 6 * 2 | |
dim_w = dim_h | |
dim_t = dim - 2 * dim_h | |
assert dim == dim_h + dim_w + dim_t, f"bad dim: {dim} != {dim_h} + {dim_w} + {dim_t}" | |
# rescale pos id is equivalent to rescale frequency | |
emb_h = get_1d_sincos_pos_embed_from_grid(dim_h, pos=np.arange(len_h) * 1.0 / h_extrapolation_ratio) | |
emb_w = get_1d_sincos_pos_embed_from_grid(dim_w, pos=np.arange(len_w) * 1.0 / w_extrapolation_ratio) | |
emb_t = get_1d_sincos_pos_embed_from_grid(dim_t, pos=np.arange(len_t) * 1.0 / t_extrapolation_ratio) | |
self.register_buffer("pos_emb_h", torch.from_numpy(emb_h).float(), persistent=False) | |
self.register_buffer("pos_emb_w", torch.from_numpy(emb_w).float(), persistent=False) | |
self.register_buffer("pos_emb_t", torch.from_numpy(emb_t).float(), persistent=False) | |
def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor]) -> torch.Tensor: | |
B, T, H, W, C = B_T_H_W_C | |
single_view_T = T // self.n_views | |
if self.interpolation == "crop": | |
emb_h_H = self.pos_emb_h[:H] | |
emb_w_W = self.pos_emb_w[:W] | |
emb_t_T = self.pos_emb_t[:single_view_T] | |
emb = torch.cat( | |
[ | |
torch.cat( | |
[ | |
repeat(emb_t_T, "t d-> b t h w d", b=B, h=H, w=W), | |
repeat(emb_h_H, "h d-> b t h w d", b=B, t=single_view_T, w=W), | |
repeat(emb_w_W, "w d-> b t h w d", b=B, t=single_view_T, h=H), | |
], | |
dim=-1, | |
) | |
for _ in range(self.n_views) | |
], | |
1, | |
) | |
assert list(emb.shape)[:4] == [B, T, H, W], f"bad shape: {list(emb.shape)[:4]} != {B, T, H, W}" | |
return emb | |
raise ValueError(f"Unknown interpolation method {self.interpolation}") | |