Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
A general implementation of adaln-modulated VIT-like~(DiT) transformer for video processing. | |
It allows us easy to switch building blocks used and their order. Its instantiation includes | |
* transformer on fully flattened tokens | |
* factored spatial and temporal attention | |
* factored non-overlap spatial and temporal attention | |
* mixing of above attention types | |
Limitations: | |
* In favor of simplicity and cleanness, many ops are not fused and we can do better | |
* such as combining mutiple adaln MLPs into one inside one transformer block. | |
* we use reshape heavily, which may be not efficient when its occurs unnecessary CUDA memory copy | |
Purpose: | |
* A prototype for testing different attention types and their combinations | |
* Idealy, we want to know where we should allocate our resources / FLOPS / memory via extensive empirical studies | |
""" | |
from collections.abc import Container | |
from typing import List, Optional, Tuple | |
import torch | |
from einops import rearrange | |
from megatron.core import parallel_state | |
from torch import nn | |
from cosmos_predict1.diffusion.module.timm import Mlp | |
from cosmos_predict1.diffusion.training.conditioner import DataType | |
from cosmos_predict1.diffusion.training.context_parallel import split_inputs_cp | |
from cosmos_predict1.diffusion.training.networks.general_dit import GeneralDIT | |
from cosmos_predict1.diffusion.training.tensor_parallel import scatter_along_first_dim | |
from cosmos_predict1.utils import log | |
class ActionConditionalGeneralDIT(GeneralDIT): | |
""" | |
ActionConditionalGeneralDIT is a subclass of GeneralDIT that take `action` as condition. | |
Action embedding is would be added to timestep embedding. | |
""" | |
def forward_before_blocks( | |
self, | |
x: torch.Tensor, | |
timesteps: torch.Tensor, | |
crossattn_emb: torch.Tensor, | |
action: Optional[torch.Tensor] = None, | |
crossattn_mask: Optional[torch.Tensor] = None, | |
fps: Optional[torch.Tensor] = None, | |
image_size: Optional[torch.Tensor] = None, | |
padding_mask: Optional[torch.Tensor] = None, | |
scalar_feature: Optional[torch.Tensor] = None, | |
data_type: Optional[DataType] = DataType.VIDEO, | |
latent_condition: Optional[torch.Tensor] = None, | |
latent_condition_sigma: Optional[torch.Tensor] = None, | |
**kwargs, | |
) -> torch.Tensor: | |
""" | |
Args: | |
x: (B, C, T, H, W) tensor of spatial-temp inputs | |
timesteps: (B, ) tensor of timesteps | |
crossattn_emb: (B, N, D) tensor of cross-attention embeddings | |
crossattn_mask: (B, N) tensor of cross-attention masks | |
""" | |
del kwargs | |
assert isinstance( | |
data_type, DataType | |
), f"Expected DataType, got {type(data_type)}. We need discuss this flag later." | |
original_shape = x.shape | |
x_B_T_H_W_D, rope_emb_L_1_1_D, extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = self.prepare_embedded_sequence( | |
x, | |
fps=fps, | |
padding_mask=padding_mask, | |
latent_condition=latent_condition, | |
latent_condition_sigma=latent_condition_sigma, | |
) | |
# logging affline scale information | |
affline_scale_log_info = {} | |
timesteps_B_D, adaln_lora_B_3D = self.t_embedder(timesteps.flatten()) | |
affline_emb_B_D = timesteps_B_D | |
affline_scale_log_info["timesteps_B_D"] = timesteps_B_D.detach() | |
if scalar_feature is not None: | |
raise NotImplementedError("Scalar feature is not implemented yet.") | |
timesteps_B_D = timesteps_B_D + scalar_feature.mean(dim=1) | |
if self.additional_timestamp_channels: | |
additional_cond_B_D = self.prepare_additional_timestamp_embedder( | |
bs=x.shape[0], | |
fps=fps, | |
h=image_size[:, 0], | |
w=image_size[:, 1], | |
org_h=image_size[:, 2], | |
org_w=image_size[:, 3], | |
) | |
affline_emb_B_D += additional_cond_B_D | |
affline_scale_log_info["additional_cond_B_D"] = additional_cond_B_D.detach() | |
affline_scale_log_info["affline_emb_B_D"] = affline_emb_B_D.detach() | |
affline_emb_B_D = self.affline_norm(affline_emb_B_D) | |
# for logging purpose | |
self.affline_scale_log_info = affline_scale_log_info | |
self.affline_emb = affline_emb_B_D | |
self.crossattn_emb = crossattn_emb | |
self.crossattn_mask = crossattn_mask | |
if self.use_cross_attn_mask: | |
crossattn_mask = crossattn_mask[:, None, None, :].to(dtype=torch.bool) # [B, 1, 1, length] | |
else: | |
crossattn_mask = None | |
if self.blocks["block0"].x_format == "THWBD": | |
x = rearrange(x_B_T_H_W_D, "B T H W D -> T H W B D") | |
if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None: | |
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = rearrange( | |
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, "B T H W D -> T H W B D" | |
) | |
crossattn_emb = rearrange(crossattn_emb, "B M D -> M B D") | |
if crossattn_mask: | |
crossattn_mask = rearrange(crossattn_mask, "B M -> M B") | |
if self.sequence_parallel: | |
tp_group = parallel_state.get_tensor_model_parallel_group() | |
# Sequence parallel requires the input tensor to be scattered along the first dimension. | |
assert self.block_config == "FA-CA-MLP" # Only support this block config for now | |
T, H, W, B, D = x.shape | |
# variable name x_T_H_W_B_D is no longer valid. x is reshaped to THW*1*1*b*D and will be reshaped back in FinalLayer | |
x = x.view(T * H * W, 1, 1, B, D) | |
assert x.shape[0] % parallel_state.get_tensor_model_parallel_world_size() == 0 | |
x = scatter_along_first_dim(x, tp_group) | |
if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None: | |
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.view( | |
T * H * W, 1, 1, B, D | |
) | |
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = scatter_along_first_dim( | |
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, tp_group | |
) | |
elif self.blocks["block0"].x_format == "BTHWD": | |
x = x_B_T_H_W_D | |
else: | |
raise ValueError(f"Unknown x_format {self.blocks[0].x_format}") | |
output = { | |
"x": x, | |
"affline_emb_B_D": affline_emb_B_D, | |
"crossattn_emb": crossattn_emb, | |
"crossattn_mask": crossattn_mask, | |
"rope_emb_L_1_1_D": rope_emb_L_1_1_D, | |
"adaln_lora_B_3D": adaln_lora_B_3D, | |
"original_shape": original_shape, | |
"extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D": extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, | |
} | |
return output | |
def forward( | |
self, | |
x: torch.Tensor, | |
timesteps: torch.Tensor, | |
crossattn_emb: torch.Tensor, | |
action: Optional[torch.Tensor] = None, | |
crossattn_mask: Optional[torch.Tensor] = None, | |
fps: Optional[torch.Tensor] = None, | |
image_size: Optional[torch.Tensor] = None, | |
padding_mask: Optional[torch.Tensor] = None, | |
scalar_feature: Optional[torch.Tensor] = None, | |
data_type: Optional[DataType] = DataType.VIDEO, | |
x_ctrl: Optional[dict] = None, | |
latent_condition: Optional[torch.Tensor] = None, | |
latent_condition_sigma: Optional[torch.Tensor] = None, | |
feature_indices: Optional[Container[int]] = None, | |
return_features_early: bool = False, | |
condition_video_augment_sigma: Optional[torch.Tensor] = None, | |
**kwargs, | |
) -> torch.Tensor | List[torch.Tensor] | Tuple[torch.Tensor, List[torch.Tensor]]: | |
""" | |
Args: | |
x: (B, C, T, H, W) tensor of spatial-temp inputs | |
timesteps: (B, ) tensor of timesteps | |
crossattn_emb: (B, N, D) tensor of cross-attention embeddings | |
crossattn_mask: (B, N) tensor of cross-attention masks | |
feature_indices: A set of feature indices (a set of integers) decides which blocks | |
to extract features from. If the set is non-empty, then features will be returned. | |
By default, feature_indices=None means extract no features. | |
return_features_early: If true, the forward pass returns the features once the set is complete. | |
This means the forward pass will not finish completely and no final output is returned. | |
condition_video_augment_sigma: (B,) used in lvg(long video generation), we add noise with this sigma to augment condition input, the lvg model will condition on the condition_video_augment_sigma value; | |
we need forward_before_blocks pass to the forward_before_blocks function. | |
""" | |
if feature_indices is None: | |
feature_indices = {} | |
if return_features_early and len(feature_indices) == 0: | |
# Exit immediately if user requested this. | |
return [] | |
inputs = self.forward_before_blocks( | |
x=x, | |
timesteps=timesteps, | |
crossattn_emb=crossattn_emb, | |
action=action, | |
crossattn_mask=crossattn_mask, | |
fps=fps, | |
image_size=image_size, | |
padding_mask=padding_mask, | |
scalar_feature=scalar_feature, | |
data_type=data_type, | |
latent_condition=latent_condition, | |
latent_condition_sigma=latent_condition_sigma, | |
condition_video_augment_sigma=condition_video_augment_sigma, | |
**kwargs, | |
) | |
x, affline_emb_B_D, crossattn_emb, crossattn_mask, rope_emb_L_1_1_D, adaln_lora_B_3D, original_shape = ( | |
inputs["x"], | |
inputs["affline_emb_B_D"], | |
inputs["crossattn_emb"], | |
inputs["crossattn_mask"], | |
inputs["rope_emb_L_1_1_D"], | |
inputs["adaln_lora_B_3D"], | |
inputs["original_shape"], | |
) | |
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = inputs["extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D"] | |
if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None: | |
assert ( | |
x.shape == extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape | |
), f"{x.shape} != {extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape} {original_shape}" | |
if self.use_memory_save: | |
return self.forward_blocks_memory_save( | |
x, | |
affline_emb_B_D, | |
crossattn_emb, | |
crossattn_mask, | |
rope_emb_L_1_1_D, | |
adaln_lora_B_3D, | |
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, | |
feature_indices, | |
original_shape, | |
x_ctrl, | |
return_features_early, | |
) | |
return self.forward_blocks_regular( | |
x, | |
affline_emb_B_D, | |
crossattn_emb, | |
crossattn_mask, | |
rope_emb_L_1_1_D, | |
adaln_lora_B_3D, | |
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, | |
feature_indices, | |
original_shape, | |
x_ctrl, | |
return_features_early, | |
) | |
class ActionConditionalVideoExtendGeneralDIT(ActionConditionalGeneralDIT): | |
""" | |
ActionConditionalVideoExtendGeneralDIT is a subclass of ActionConditionalGeneralDIT that take `action` as condition. | |
Action embedding is would be added to timestep embedding. | |
""" | |
def __init__(self, *args, in_channels=16 + 1, add_augment_sigma_embedding=False, **kwargs): | |
self.add_augment_sigma_embedding = add_augment_sigma_embedding | |
# extra channel for video condition mask | |
super().__init__(*args, in_channels=in_channels, **kwargs) | |
log.info(f"VideoExtendGeneralDIT in_channels: {in_channels}") | |
assert hasattr(self, "model_channels"), "model_channels attribute is missing" | |
self.action_embedder_B_D = Mlp( | |
in_features=7, | |
hidden_features=self.model_channels * 4, | |
out_features=self.model_channels, | |
act_layer=lambda: nn.GELU(approximate="tanh"), | |
drop=0, | |
) | |
self.action_embedder_B_3D = Mlp( | |
in_features=7, | |
hidden_features=self.model_channels * 4, | |
out_features=self.model_channels * 3, | |
act_layer=lambda: nn.GELU(approximate="tanh"), | |
drop=0, | |
) | |
def forward( | |
self, | |
x: torch.Tensor, | |
timesteps: torch.Tensor, | |
crossattn_emb: torch.Tensor, | |
action: Optional[torch.Tensor] = None, | |
crossattn_mask: Optional[torch.Tensor] = None, | |
fps: Optional[torch.Tensor] = None, | |
image_size: Optional[torch.Tensor] = None, | |
padding_mask: Optional[torch.Tensor] = None, | |
scalar_feature: Optional[torch.Tensor] = None, | |
data_type: Optional[DataType] = DataType.VIDEO, | |
video_cond_bool: Optional[torch.Tensor] = None, | |
condition_video_indicator: Optional[torch.Tensor] = None, | |
condition_video_input_mask: Optional[torch.Tensor] = None, | |
condition_video_augment_sigma: Optional[torch.Tensor] = None, | |
condition_video_pose: Optional[torch.Tensor] = None, | |
**kwargs, | |
) -> torch.Tensor: | |
"""Args: | |
condition_video_augment_sigma: (B) tensor of sigma value for the conditional input augmentation | |
condition_video_pose: (B, 1, T, H, W) tensor of pose condition | |
""" | |
B, C, T, H, W = x.shape | |
if data_type == DataType.VIDEO: | |
assert ( | |
condition_video_input_mask is not None | |
), "condition_video_input_mask is required for video data type; check if your model_obj is extend_model.FSDPDiffusionModel or the base DiffusionModel" | |
if self.cp_group is not None: | |
condition_video_input_mask = split_inputs_cp( | |
condition_video_input_mask, seq_dim=2, cp_group=self.cp_group | |
) | |
condition_video_indicator = split_inputs_cp( | |
condition_video_indicator, seq_dim=2, cp_group=self.cp_group | |
) | |
if condition_video_pose is not None: | |
condition_video_pose = split_inputs_cp(condition_video_pose, seq_dim=2, cp_group=self.cp_group) | |
# log.critical(f"hit video case, video_cond_bool: {video_cond_bool}, condition_video_indicator: {condition_video_indicator.flatten()}, condition_video_input_mask: {condition_video_input_mask.shape}, {condition_video_input_mask[:,:,:,0,0]}", rank0_only=False) | |
input_list = [x, condition_video_input_mask] | |
if condition_video_pose is not None: | |
if condition_video_pose.shape[2] > T: | |
log.warning( | |
f"condition_video_pose has more frames than the input video: {condition_video_pose.shape} > {x.shape}" | |
) | |
condition_video_pose = condition_video_pose[:, :, :T, :, :].contiguous() | |
input_list.append(condition_video_pose) | |
x = torch.cat( | |
input_list, | |
dim=1, | |
) | |
if data_type == DataType.IMAGE: | |
# For image, we dont have condition_video_input_mask, or condition_video_pose | |
# We need to add the extra channel for video condition mask | |
padding_channels = self.in_channels - x.shape[1] | |
x = torch.cat([x, torch.zeros((B, padding_channels, T, H, W), dtype=x.dtype, device=x.device)], dim=1) | |
else: | |
assert x.shape[1] == self.in_channels, f"Expected {self.in_channels} channels, got {x.shape[1]}" | |
return super().forward( | |
x=x, | |
timesteps=timesteps, | |
crossattn_emb=crossattn_emb, | |
action=action, | |
crossattn_mask=crossattn_mask, | |
fps=fps, | |
image_size=image_size, | |
padding_mask=padding_mask, | |
scalar_feature=scalar_feature, | |
data_type=data_type, | |
condition_video_augment_sigma=condition_video_augment_sigma, | |
**kwargs, | |
) | |
def forward_before_blocks( | |
self, | |
x: torch.Tensor, | |
timesteps: torch.Tensor, | |
crossattn_emb: torch.Tensor, | |
action: Optional[torch.Tensor] = None, | |
crossattn_mask: Optional[torch.Tensor] = None, | |
fps: Optional[torch.Tensor] = None, | |
image_size: Optional[torch.Tensor] = None, | |
padding_mask: Optional[torch.Tensor] = None, | |
scalar_feature: Optional[torch.Tensor] = None, | |
data_type: Optional[DataType] = DataType.VIDEO, | |
latent_condition: Optional[torch.Tensor] = None, | |
latent_condition_sigma: Optional[torch.Tensor] = None, | |
condition_video_augment_sigma: Optional[torch.Tensor] = None, | |
**kwargs, | |
) -> torch.Tensor: | |
""" | |
Args: | |
x: (B, C, T, H, W) tensor of spatial-temp inputs | |
timesteps: (B, ) tensor of timesteps | |
crossattn_emb: (B, N, D) tensor of cross-attention embeddings | |
crossattn_mask: (B, N) tensor of cross-attention masks | |
condition_video_augment_sigma: (B, T) tensor of sigma value for the conditional input augmentation | |
""" | |
del kwargs | |
assert isinstance( | |
data_type, DataType | |
), f"Expected DataType, got {type(data_type)}. We need discuss this flag later." | |
original_shape = x.shape | |
x_B_T_H_W_D, rope_emb_L_1_1_D, extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = self.prepare_embedded_sequence( | |
x, | |
fps=fps, | |
padding_mask=padding_mask, | |
latent_condition=latent_condition, | |
latent_condition_sigma=latent_condition_sigma, | |
) | |
# logging affline scale information | |
affline_scale_log_info = {} | |
timesteps_B_D, adaln_lora_B_3D = self.t_embedder(timesteps.flatten()) | |
affline_emb_B_D = timesteps_B_D | |
affline_scale_log_info["timesteps_B_D"] = timesteps_B_D.detach() | |
# Add action conditioning | |
assert action is not None, "Action is required for action-conditional training" | |
if action is not None: | |
action = action[:, 0, :] # Since we are now training on 1 frame, we only need the first frame action. | |
action_embedding_B_D = self.action_embedder_B_D(action) | |
action_embedding_B_3D = self.action_embedder_B_3D(action) | |
timesteps_B_D = timesteps_B_D + action_embedding_B_D | |
adaln_lora_B_3D = adaln_lora_B_3D + action_embedding_B_3D | |
if scalar_feature is not None: | |
raise NotImplementedError("Scalar feature is not implemented yet.") | |
timesteps_B_D = timesteps_B_D + scalar_feature.mean(dim=1) | |
if self.additional_timestamp_channels: | |
additional_cond_B_D = self.prepare_additional_timestamp_embedder( | |
bs=x.shape[0], | |
fps=fps, | |
h=image_size[:, 0], | |
w=image_size[:, 1], | |
org_h=image_size[:, 2], | |
org_w=image_size[:, 3], | |
) | |
affline_emb_B_D += additional_cond_B_D | |
affline_scale_log_info["additional_cond_B_D"] = additional_cond_B_D.detach() | |
if self.add_augment_sigma_embedding: | |
if condition_video_augment_sigma is None: | |
# Handling image case | |
# Note: for video case, when there is not condition frames, we also set it as zero, see extend_model augment_conditional_latent_frames function | |
assert data_type == DataType.IMAGE, "condition_video_augment_sigma is required for video data type" | |
condition_video_augment_sigma = torch.zeros_like(timesteps.flatten()) | |
affline_augment_sigma_emb_B_D, adaln_lora_sigma_emb_B_3D = self.augment_sigma_embedder( | |
condition_video_augment_sigma.flatten() | |
) | |
affline_emb_B_D = affline_emb_B_D + affline_augment_sigma_emb_B_D | |
affline_scale_log_info["affline_emb_B_D"] = affline_emb_B_D.detach() | |
affline_emb_B_D = self.affline_norm(affline_emb_B_D) | |
# for logging purpose | |
self.affline_scale_log_info = affline_scale_log_info | |
self.affline_emb = affline_emb_B_D | |
self.crossattn_emb = crossattn_emb | |
self.crossattn_mask = crossattn_mask | |
if self.use_cross_attn_mask: | |
crossattn_mask = crossattn_mask[:, None, None, :].to(dtype=torch.bool) # [B, 1, 1, length] | |
else: | |
crossattn_mask = None | |
if self.blocks["block0"].x_format == "THWBD": | |
x = rearrange(x_B_T_H_W_D, "B T H W D -> T H W B D") | |
if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None: | |
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = rearrange( | |
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, "B T H W D -> T H W B D" | |
) | |
crossattn_emb = rearrange(crossattn_emb, "B M D -> M B D") | |
if crossattn_mask: | |
crossattn_mask = rearrange(crossattn_mask, "B M -> M B") | |
if self.sequence_parallel: | |
tp_group = parallel_state.get_tensor_model_parallel_group() | |
# Sequence parallel requires the input tensor to be scattered along the first dimension. | |
assert self.block_config == "FA-CA-MLP" # Only support this block config for now | |
T, H, W, B, D = x.shape | |
# variable name x_T_H_W_B_D is no longer valid. x is reshaped to THW*1*1*b*D and will be reshaped back in FinalLayer | |
x = x.view(T * H * W, 1, 1, B, D) | |
assert x.shape[0] % parallel_state.get_tensor_model_parallel_world_size() == 0 | |
x = scatter_along_first_dim(x, tp_group) | |
if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None: | |
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.view( | |
T * H * W, 1, 1, B, D | |
) | |
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = scatter_along_first_dim( | |
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, tp_group | |
) | |
elif self.blocks["block0"].x_format == "BTHWD": | |
x = x_B_T_H_W_D | |
else: | |
raise ValueError(f"Unknown x_format {self.blocks[0].x_format}") | |
output = { | |
"x": x, | |
"affline_emb_B_D": affline_emb_B_D, | |
"crossattn_emb": crossattn_emb, | |
"crossattn_mask": crossattn_mask, | |
"rope_emb_L_1_1_D": rope_emb_L_1_1_D, | |
"adaln_lora_B_3D": adaln_lora_B_3D, | |
"original_shape": original_shape, | |
"extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D": extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, | |
} | |
return output | |