roll-ai's picture
Upload 381 files
b6af722 verified
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A general implementation of adaln-modulated VIT-like~(DiT) transformer for video processing.
It allows us easy to switch building blocks used and their order. Its instantiation includes
* transformer on fully flattened tokens
* factored spatial and temporal attention
* factored non-overlap spatial and temporal attention
* mixing of above attention types
Limitations:
* In favor of simplicity and cleanness, many ops are not fused and we can do better
* such as combining mutiple adaln MLPs into one inside one transformer block.
* we use reshape heavily, which may be not efficient when its occurs unnecessary CUDA memory copy
Purpose:
* A prototype for testing different attention types and their combinations
* Idealy, we want to know where we should allocate our resources / FLOPS / memory via extensive empirical studies
"""
from collections.abc import Container
from typing import List, Optional, Tuple
import torch
from einops import rearrange
from megatron.core import parallel_state
from torch import nn
from cosmos_predict1.diffusion.module.timm import Mlp
from cosmos_predict1.diffusion.training.conditioner import DataType
from cosmos_predict1.diffusion.training.context_parallel import split_inputs_cp
from cosmos_predict1.diffusion.training.networks.general_dit import GeneralDIT
from cosmos_predict1.diffusion.training.tensor_parallel import scatter_along_first_dim
from cosmos_predict1.utils import log
class ActionConditionalGeneralDIT(GeneralDIT):
"""
ActionConditionalGeneralDIT is a subclass of GeneralDIT that take `action` as condition.
Action embedding is would be added to timestep embedding.
"""
def forward_before_blocks(
self,
x: torch.Tensor,
timesteps: torch.Tensor,
crossattn_emb: torch.Tensor,
action: Optional[torch.Tensor] = None,
crossattn_mask: Optional[torch.Tensor] = None,
fps: Optional[torch.Tensor] = None,
image_size: Optional[torch.Tensor] = None,
padding_mask: Optional[torch.Tensor] = None,
scalar_feature: Optional[torch.Tensor] = None,
data_type: Optional[DataType] = DataType.VIDEO,
latent_condition: Optional[torch.Tensor] = None,
latent_condition_sigma: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
"""
Args:
x: (B, C, T, H, W) tensor of spatial-temp inputs
timesteps: (B, ) tensor of timesteps
crossattn_emb: (B, N, D) tensor of cross-attention embeddings
crossattn_mask: (B, N) tensor of cross-attention masks
"""
del kwargs
assert isinstance(
data_type, DataType
), f"Expected DataType, got {type(data_type)}. We need discuss this flag later."
original_shape = x.shape
x_B_T_H_W_D, rope_emb_L_1_1_D, extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = self.prepare_embedded_sequence(
x,
fps=fps,
padding_mask=padding_mask,
latent_condition=latent_condition,
latent_condition_sigma=latent_condition_sigma,
)
# logging affline scale information
affline_scale_log_info = {}
timesteps_B_D, adaln_lora_B_3D = self.t_embedder(timesteps.flatten())
affline_emb_B_D = timesteps_B_D
affline_scale_log_info["timesteps_B_D"] = timesteps_B_D.detach()
if scalar_feature is not None:
raise NotImplementedError("Scalar feature is not implemented yet.")
timesteps_B_D = timesteps_B_D + scalar_feature.mean(dim=1)
if self.additional_timestamp_channels:
additional_cond_B_D = self.prepare_additional_timestamp_embedder(
bs=x.shape[0],
fps=fps,
h=image_size[:, 0],
w=image_size[:, 1],
org_h=image_size[:, 2],
org_w=image_size[:, 3],
)
affline_emb_B_D += additional_cond_B_D
affline_scale_log_info["additional_cond_B_D"] = additional_cond_B_D.detach()
affline_scale_log_info["affline_emb_B_D"] = affline_emb_B_D.detach()
affline_emb_B_D = self.affline_norm(affline_emb_B_D)
# for logging purpose
self.affline_scale_log_info = affline_scale_log_info
self.affline_emb = affline_emb_B_D
self.crossattn_emb = crossattn_emb
self.crossattn_mask = crossattn_mask
if self.use_cross_attn_mask:
crossattn_mask = crossattn_mask[:, None, None, :].to(dtype=torch.bool) # [B, 1, 1, length]
else:
crossattn_mask = None
if self.blocks["block0"].x_format == "THWBD":
x = rearrange(x_B_T_H_W_D, "B T H W D -> T H W B D")
if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None:
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = rearrange(
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, "B T H W D -> T H W B D"
)
crossattn_emb = rearrange(crossattn_emb, "B M D -> M B D")
if crossattn_mask:
crossattn_mask = rearrange(crossattn_mask, "B M -> M B")
if self.sequence_parallel:
tp_group = parallel_state.get_tensor_model_parallel_group()
# Sequence parallel requires the input tensor to be scattered along the first dimension.
assert self.block_config == "FA-CA-MLP" # Only support this block config for now
T, H, W, B, D = x.shape
# variable name x_T_H_W_B_D is no longer valid. x is reshaped to THW*1*1*b*D and will be reshaped back in FinalLayer
x = x.view(T * H * W, 1, 1, B, D)
assert x.shape[0] % parallel_state.get_tensor_model_parallel_world_size() == 0
x = scatter_along_first_dim(x, tp_group)
if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None:
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.view(
T * H * W, 1, 1, B, D
)
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = scatter_along_first_dim(
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, tp_group
)
elif self.blocks["block0"].x_format == "BTHWD":
x = x_B_T_H_W_D
else:
raise ValueError(f"Unknown x_format {self.blocks[0].x_format}")
output = {
"x": x,
"affline_emb_B_D": affline_emb_B_D,
"crossattn_emb": crossattn_emb,
"crossattn_mask": crossattn_mask,
"rope_emb_L_1_1_D": rope_emb_L_1_1_D,
"adaln_lora_B_3D": adaln_lora_B_3D,
"original_shape": original_shape,
"extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D": extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D,
}
return output
def forward(
self,
x: torch.Tensor,
timesteps: torch.Tensor,
crossattn_emb: torch.Tensor,
action: Optional[torch.Tensor] = None,
crossattn_mask: Optional[torch.Tensor] = None,
fps: Optional[torch.Tensor] = None,
image_size: Optional[torch.Tensor] = None,
padding_mask: Optional[torch.Tensor] = None,
scalar_feature: Optional[torch.Tensor] = None,
data_type: Optional[DataType] = DataType.VIDEO,
x_ctrl: Optional[dict] = None,
latent_condition: Optional[torch.Tensor] = None,
latent_condition_sigma: Optional[torch.Tensor] = None,
feature_indices: Optional[Container[int]] = None,
return_features_early: bool = False,
condition_video_augment_sigma: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor | List[torch.Tensor] | Tuple[torch.Tensor, List[torch.Tensor]]:
"""
Args:
x: (B, C, T, H, W) tensor of spatial-temp inputs
timesteps: (B, ) tensor of timesteps
crossattn_emb: (B, N, D) tensor of cross-attention embeddings
crossattn_mask: (B, N) tensor of cross-attention masks
feature_indices: A set of feature indices (a set of integers) decides which blocks
to extract features from. If the set is non-empty, then features will be returned.
By default, feature_indices=None means extract no features.
return_features_early: If true, the forward pass returns the features once the set is complete.
This means the forward pass will not finish completely and no final output is returned.
condition_video_augment_sigma: (B,) used in lvg(long video generation), we add noise with this sigma to augment condition input, the lvg model will condition on the condition_video_augment_sigma value;
we need forward_before_blocks pass to the forward_before_blocks function.
"""
if feature_indices is None:
feature_indices = {}
if return_features_early and len(feature_indices) == 0:
# Exit immediately if user requested this.
return []
inputs = self.forward_before_blocks(
x=x,
timesteps=timesteps,
crossattn_emb=crossattn_emb,
action=action,
crossattn_mask=crossattn_mask,
fps=fps,
image_size=image_size,
padding_mask=padding_mask,
scalar_feature=scalar_feature,
data_type=data_type,
latent_condition=latent_condition,
latent_condition_sigma=latent_condition_sigma,
condition_video_augment_sigma=condition_video_augment_sigma,
**kwargs,
)
x, affline_emb_B_D, crossattn_emb, crossattn_mask, rope_emb_L_1_1_D, adaln_lora_B_3D, original_shape = (
inputs["x"],
inputs["affline_emb_B_D"],
inputs["crossattn_emb"],
inputs["crossattn_mask"],
inputs["rope_emb_L_1_1_D"],
inputs["adaln_lora_B_3D"],
inputs["original_shape"],
)
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = inputs["extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D"]
if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None:
assert (
x.shape == extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape
), f"{x.shape} != {extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape} {original_shape}"
if self.use_memory_save:
return self.forward_blocks_memory_save(
x,
affline_emb_B_D,
crossattn_emb,
crossattn_mask,
rope_emb_L_1_1_D,
adaln_lora_B_3D,
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D,
feature_indices,
original_shape,
x_ctrl,
return_features_early,
)
return self.forward_blocks_regular(
x,
affline_emb_B_D,
crossattn_emb,
crossattn_mask,
rope_emb_L_1_1_D,
adaln_lora_B_3D,
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D,
feature_indices,
original_shape,
x_ctrl,
return_features_early,
)
class ActionConditionalVideoExtendGeneralDIT(ActionConditionalGeneralDIT):
"""
ActionConditionalVideoExtendGeneralDIT is a subclass of ActionConditionalGeneralDIT that take `action` as condition.
Action embedding is would be added to timestep embedding.
"""
def __init__(self, *args, in_channels=16 + 1, add_augment_sigma_embedding=False, **kwargs):
self.add_augment_sigma_embedding = add_augment_sigma_embedding
# extra channel for video condition mask
super().__init__(*args, in_channels=in_channels, **kwargs)
log.info(f"VideoExtendGeneralDIT in_channels: {in_channels}")
assert hasattr(self, "model_channels"), "model_channels attribute is missing"
self.action_embedder_B_D = Mlp(
in_features=7,
hidden_features=self.model_channels * 4,
out_features=self.model_channels,
act_layer=lambda: nn.GELU(approximate="tanh"),
drop=0,
)
self.action_embedder_B_3D = Mlp(
in_features=7,
hidden_features=self.model_channels * 4,
out_features=self.model_channels * 3,
act_layer=lambda: nn.GELU(approximate="tanh"),
drop=0,
)
def forward(
self,
x: torch.Tensor,
timesteps: torch.Tensor,
crossattn_emb: torch.Tensor,
action: Optional[torch.Tensor] = None,
crossattn_mask: Optional[torch.Tensor] = None,
fps: Optional[torch.Tensor] = None,
image_size: Optional[torch.Tensor] = None,
padding_mask: Optional[torch.Tensor] = None,
scalar_feature: Optional[torch.Tensor] = None,
data_type: Optional[DataType] = DataType.VIDEO,
video_cond_bool: Optional[torch.Tensor] = None,
condition_video_indicator: Optional[torch.Tensor] = None,
condition_video_input_mask: Optional[torch.Tensor] = None,
condition_video_augment_sigma: Optional[torch.Tensor] = None,
condition_video_pose: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
"""Args:
condition_video_augment_sigma: (B) tensor of sigma value for the conditional input augmentation
condition_video_pose: (B, 1, T, H, W) tensor of pose condition
"""
B, C, T, H, W = x.shape
if data_type == DataType.VIDEO:
assert (
condition_video_input_mask is not None
), "condition_video_input_mask is required for video data type; check if your model_obj is extend_model.FSDPDiffusionModel or the base DiffusionModel"
if self.cp_group is not None:
condition_video_input_mask = split_inputs_cp(
condition_video_input_mask, seq_dim=2, cp_group=self.cp_group
)
condition_video_indicator = split_inputs_cp(
condition_video_indicator, seq_dim=2, cp_group=self.cp_group
)
if condition_video_pose is not None:
condition_video_pose = split_inputs_cp(condition_video_pose, seq_dim=2, cp_group=self.cp_group)
# log.critical(f"hit video case, video_cond_bool: {video_cond_bool}, condition_video_indicator: {condition_video_indicator.flatten()}, condition_video_input_mask: {condition_video_input_mask.shape}, {condition_video_input_mask[:,:,:,0,0]}", rank0_only=False)
input_list = [x, condition_video_input_mask]
if condition_video_pose is not None:
if condition_video_pose.shape[2] > T:
log.warning(
f"condition_video_pose has more frames than the input video: {condition_video_pose.shape} > {x.shape}"
)
condition_video_pose = condition_video_pose[:, :, :T, :, :].contiguous()
input_list.append(condition_video_pose)
x = torch.cat(
input_list,
dim=1,
)
if data_type == DataType.IMAGE:
# For image, we dont have condition_video_input_mask, or condition_video_pose
# We need to add the extra channel for video condition mask
padding_channels = self.in_channels - x.shape[1]
x = torch.cat([x, torch.zeros((B, padding_channels, T, H, W), dtype=x.dtype, device=x.device)], dim=1)
else:
assert x.shape[1] == self.in_channels, f"Expected {self.in_channels} channels, got {x.shape[1]}"
return super().forward(
x=x,
timesteps=timesteps,
crossattn_emb=crossattn_emb,
action=action,
crossattn_mask=crossattn_mask,
fps=fps,
image_size=image_size,
padding_mask=padding_mask,
scalar_feature=scalar_feature,
data_type=data_type,
condition_video_augment_sigma=condition_video_augment_sigma,
**kwargs,
)
def forward_before_blocks(
self,
x: torch.Tensor,
timesteps: torch.Tensor,
crossattn_emb: torch.Tensor,
action: Optional[torch.Tensor] = None,
crossattn_mask: Optional[torch.Tensor] = None,
fps: Optional[torch.Tensor] = None,
image_size: Optional[torch.Tensor] = None,
padding_mask: Optional[torch.Tensor] = None,
scalar_feature: Optional[torch.Tensor] = None,
data_type: Optional[DataType] = DataType.VIDEO,
latent_condition: Optional[torch.Tensor] = None,
latent_condition_sigma: Optional[torch.Tensor] = None,
condition_video_augment_sigma: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
"""
Args:
x: (B, C, T, H, W) tensor of spatial-temp inputs
timesteps: (B, ) tensor of timesteps
crossattn_emb: (B, N, D) tensor of cross-attention embeddings
crossattn_mask: (B, N) tensor of cross-attention masks
condition_video_augment_sigma: (B, T) tensor of sigma value for the conditional input augmentation
"""
del kwargs
assert isinstance(
data_type, DataType
), f"Expected DataType, got {type(data_type)}. We need discuss this flag later."
original_shape = x.shape
x_B_T_H_W_D, rope_emb_L_1_1_D, extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = self.prepare_embedded_sequence(
x,
fps=fps,
padding_mask=padding_mask,
latent_condition=latent_condition,
latent_condition_sigma=latent_condition_sigma,
)
# logging affline scale information
affline_scale_log_info = {}
timesteps_B_D, adaln_lora_B_3D = self.t_embedder(timesteps.flatten())
affline_emb_B_D = timesteps_B_D
affline_scale_log_info["timesteps_B_D"] = timesteps_B_D.detach()
# Add action conditioning
assert action is not None, "Action is required for action-conditional training"
if action is not None:
action = action[:, 0, :] # Since we are now training on 1 frame, we only need the first frame action.
action_embedding_B_D = self.action_embedder_B_D(action)
action_embedding_B_3D = self.action_embedder_B_3D(action)
timesteps_B_D = timesteps_B_D + action_embedding_B_D
adaln_lora_B_3D = adaln_lora_B_3D + action_embedding_B_3D
if scalar_feature is not None:
raise NotImplementedError("Scalar feature is not implemented yet.")
timesteps_B_D = timesteps_B_D + scalar_feature.mean(dim=1)
if self.additional_timestamp_channels:
additional_cond_B_D = self.prepare_additional_timestamp_embedder(
bs=x.shape[0],
fps=fps,
h=image_size[:, 0],
w=image_size[:, 1],
org_h=image_size[:, 2],
org_w=image_size[:, 3],
)
affline_emb_B_D += additional_cond_B_D
affline_scale_log_info["additional_cond_B_D"] = additional_cond_B_D.detach()
if self.add_augment_sigma_embedding:
if condition_video_augment_sigma is None:
# Handling image case
# Note: for video case, when there is not condition frames, we also set it as zero, see extend_model augment_conditional_latent_frames function
assert data_type == DataType.IMAGE, "condition_video_augment_sigma is required for video data type"
condition_video_augment_sigma = torch.zeros_like(timesteps.flatten())
affline_augment_sigma_emb_B_D, adaln_lora_sigma_emb_B_3D = self.augment_sigma_embedder(
condition_video_augment_sigma.flatten()
)
affline_emb_B_D = affline_emb_B_D + affline_augment_sigma_emb_B_D
affline_scale_log_info["affline_emb_B_D"] = affline_emb_B_D.detach()
affline_emb_B_D = self.affline_norm(affline_emb_B_D)
# for logging purpose
self.affline_scale_log_info = affline_scale_log_info
self.affline_emb = affline_emb_B_D
self.crossattn_emb = crossattn_emb
self.crossattn_mask = crossattn_mask
if self.use_cross_attn_mask:
crossattn_mask = crossattn_mask[:, None, None, :].to(dtype=torch.bool) # [B, 1, 1, length]
else:
crossattn_mask = None
if self.blocks["block0"].x_format == "THWBD":
x = rearrange(x_B_T_H_W_D, "B T H W D -> T H W B D")
if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None:
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = rearrange(
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, "B T H W D -> T H W B D"
)
crossattn_emb = rearrange(crossattn_emb, "B M D -> M B D")
if crossattn_mask:
crossattn_mask = rearrange(crossattn_mask, "B M -> M B")
if self.sequence_parallel:
tp_group = parallel_state.get_tensor_model_parallel_group()
# Sequence parallel requires the input tensor to be scattered along the first dimension.
assert self.block_config == "FA-CA-MLP" # Only support this block config for now
T, H, W, B, D = x.shape
# variable name x_T_H_W_B_D is no longer valid. x is reshaped to THW*1*1*b*D and will be reshaped back in FinalLayer
x = x.view(T * H * W, 1, 1, B, D)
assert x.shape[0] % parallel_state.get_tensor_model_parallel_world_size() == 0
x = scatter_along_first_dim(x, tp_group)
if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None:
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.view(
T * H * W, 1, 1, B, D
)
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = scatter_along_first_dim(
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, tp_group
)
elif self.blocks["block0"].x_format == "BTHWD":
x = x_B_T_H_W_D
else:
raise ValueError(f"Unknown x_format {self.blocks[0].x_format}")
output = {
"x": x,
"affline_emb_B_D": affline_emb_B_D,
"crossattn_emb": crossattn_emb,
"crossattn_mask": crossattn_mask,
"rope_emb_L_1_1_D": rope_emb_L_1_1_D,
"adaln_lora_B_3D": adaln_lora_B_3D,
"original_shape": original_shape,
"extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D": extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D,
}
return output