Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""The distribution modes to use for continuous image tokenizers.""" | |
import torch | |
class IdentityDistribution(torch.nn.Module): | |
def __init__(self): | |
super().__init__() | |
def forward(self, parameters): | |
return parameters, (torch.tensor([0.0]), torch.tensor([0.0])) | |
class GaussianDistribution(torch.nn.Module): | |
def __init__(self, min_logvar: float = -30.0, max_logvar: float = 20.0): | |
super().__init__() | |
self.min_logvar = min_logvar | |
self.max_logvar = max_logvar | |
def sample(self, mean, logvar): | |
std = torch.exp(0.5 * logvar) | |
return mean + std * torch.randn_like(mean) | |
def forward(self, parameters): | |
mean, logvar = torch.chunk(parameters, 2, dim=1) | |
logvar = torch.clamp(logvar, self.min_logvar, self.max_logvar) | |
return self.sample(mean, logvar), (mean, logvar) | |