Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""The model definition for Continuous 2D layers | |
Adapted from: https://github.com/CompVis/stable-diffusion/blob/ | |
21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/ldm/modules/diffusionmodules/model.py | |
[Copyright (c) 2022 Robin Rombach and Patrick Esser and contributors] | |
https://github.com/CompVis/stable-diffusion/blob/ | |
21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/LICENSE | |
""" | |
import math | |
import numpy as np | |
# pytorch_diffusion + derived encoder decoder | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from loguru import logger as logging | |
from cosmos_predict1.tokenizer.modules.patching import Patcher, UnPatcher | |
from cosmos_predict1.tokenizer.modules.utils import Normalize, nonlinearity | |
class Upsample(nn.Module): | |
def __init__(self, in_channels: int): | |
super().__init__() | |
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = x.repeat_interleave(2, dim=2).repeat_interleave(2, dim=3) | |
return self.conv(x) | |
class Downsample(nn.Module): | |
def __init__(self, in_channels: int): | |
super().__init__() | |
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
pad = (0, 1, 0, 1) | |
x = F.pad(x, pad, mode="constant", value=0) | |
return self.conv(x) | |
class ResnetBlock(nn.Module): | |
def __init__( | |
self, | |
*, | |
in_channels: int, | |
out_channels: int = None, | |
dropout: float, | |
**kwargs, | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
out_channels = in_channels if out_channels is None else out_channels | |
self.norm1 = Normalize(in_channels) | |
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
self.norm2 = Normalize(out_channels) | |
self.dropout = nn.Dropout(dropout) | |
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
self.nin_shortcut = ( | |
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) | |
if in_channels != out_channels | |
else nn.Identity() | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
h = x | |
h = self.norm1(h) | |
h = nonlinearity(h) | |
h = self.conv1(h) | |
h = self.norm2(h) | |
h = nonlinearity(h) | |
h = self.dropout(h) | |
h = self.conv2(h) | |
x = self.nin_shortcut(x) | |
return x + h | |
class AttnBlock(nn.Module): | |
def __init__(self, in_channels: int): | |
super().__init__() | |
self.norm = Normalize(in_channels) | |
self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) | |
self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) | |
self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) | |
self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
h_ = x | |
h_ = self.norm(h_) | |
q = self.q(h_) | |
k = self.k(h_) | |
v = self.v(h_) | |
# compute attention | |
b, c, h, w = q.shape | |
q = q.reshape(b, c, h * w) | |
q = q.permute(0, 2, 1) | |
k = k.reshape(b, c, h * w) | |
w_ = torch.bmm(q, k) | |
w_ = w_ * (int(c) ** (-0.5)) | |
w_ = F.softmax(w_, dim=2) | |
# attend to values | |
v = v.reshape(b, c, h * w) | |
w_ = w_.permute(0, 2, 1) | |
h_ = torch.bmm(v, w_) | |
h_ = h_.reshape(b, c, h, w) | |
h_ = self.proj_out(h_) | |
return x + h_ | |
class Encoder(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
channels: int, | |
channels_mult: list[int], | |
num_res_blocks: int, | |
attn_resolutions: list[int], | |
dropout: float, | |
resolution: int, | |
z_channels: int, | |
spatial_compression: int, | |
**ignore_kwargs, | |
): | |
super().__init__() | |
self.num_resolutions = len(channels_mult) | |
self.num_res_blocks = num_res_blocks | |
# Patcher. | |
patch_size = ignore_kwargs.get("patch_size", 1) | |
self.patcher = Patcher(patch_size, ignore_kwargs.get("patch_method", "rearrange")) | |
in_channels = in_channels * patch_size * patch_size | |
# calculate the number of downsample operations | |
self.num_downsamples = int(math.log2(spatial_compression)) - int(math.log2(patch_size)) | |
assert ( | |
self.num_downsamples <= self.num_resolutions | |
), f"we can only downsample {self.num_resolutions} times at most" | |
# downsampling | |
self.conv_in = torch.nn.Conv2d(in_channels, channels, kernel_size=3, stride=1, padding=1) | |
curr_res = resolution // patch_size | |
in_ch_mult = (1,) + tuple(channels_mult) | |
self.in_ch_mult = in_ch_mult | |
self.down = nn.ModuleList() | |
for i_level in range(self.num_resolutions): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_in = channels * in_ch_mult[i_level] | |
block_out = channels * channels_mult[i_level] | |
for _ in range(self.num_res_blocks): | |
block.append( | |
ResnetBlock( | |
in_channels=block_in, | |
out_channels=block_out, | |
dropout=dropout, | |
) | |
) | |
block_in = block_out | |
if curr_res in attn_resolutions: | |
attn.append(AttnBlock(block_in)) | |
down = nn.Module() | |
down.block = block | |
down.attn = attn | |
if i_level < self.num_downsamples: | |
down.downsample = Downsample(block_in) | |
curr_res = curr_res // 2 | |
self.down.append(down) | |
# middle | |
self.mid = nn.Module() | |
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, dropout=dropout) | |
self.mid.attn_1 = AttnBlock(block_in) | |
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, dropout=dropout) | |
# end | |
self.norm_out = Normalize(block_in) | |
self.conv_out = torch.nn.Conv2d(block_in, z_channels, kernel_size=3, stride=1, padding=1) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.patcher(x) | |
# downsampling | |
hs = [self.conv_in(x)] | |
for i_level in range(self.num_resolutions): | |
for i_block in range(self.num_res_blocks): | |
h = self.down[i_level].block[i_block](hs[-1]) | |
if len(self.down[i_level].attn) > 0: | |
h = self.down[i_level].attn[i_block](h) | |
hs.append(h) | |
if i_level < self.num_downsamples: | |
hs.append(self.down[i_level].downsample(hs[-1])) | |
# middle | |
h = hs[-1] | |
h = self.mid.block_1(h) | |
h = self.mid.attn_1(h) | |
h = self.mid.block_2(h) | |
# end | |
h = self.norm_out(h) | |
h = nonlinearity(h) | |
h = self.conv_out(h) | |
return h | |
class Decoder(nn.Module): | |
def __init__( | |
self, | |
out_channels: int, | |
channels: int, | |
channels_mult: list[int], | |
num_res_blocks: int, | |
attn_resolutions: int, | |
dropout: float, | |
resolution: int, | |
z_channels: int, | |
spatial_compression: int, | |
**ignore_kwargs, | |
): | |
super().__init__() | |
self.num_resolutions = len(channels_mult) | |
self.num_res_blocks = num_res_blocks | |
# UnPatcher. | |
patch_size = ignore_kwargs.get("patch_size", 1) | |
self.unpatcher = UnPatcher(patch_size, ignore_kwargs.get("patch_method", "rearrange")) | |
out_ch = out_channels * patch_size * patch_size | |
# calculate the number of upsample operations | |
self.num_upsamples = int(math.log2(spatial_compression)) - int(math.log2(patch_size)) | |
assert self.num_upsamples <= self.num_resolutions, f"we can only upsample {self.num_resolutions} times at most" | |
block_in = channels * channels_mult[self.num_resolutions - 1] | |
curr_res = (resolution // patch_size) // 2 ** (self.num_resolutions - 1) | |
self.z_shape = (1, z_channels, curr_res, curr_res) | |
logging.info("Working with z of shape {} = {} dimensions.".format(self.z_shape, np.prod(self.z_shape))) | |
# z to block_in | |
self.conv_in = torch.nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1) | |
# middle | |
self.mid = nn.Module() | |
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, dropout=dropout) | |
self.mid.attn_1 = AttnBlock(block_in) | |
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, dropout=dropout) | |
# upsampling | |
self.up = nn.ModuleList() | |
for i_level in reversed(range(self.num_resolutions)): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_out = channels * channels_mult[i_level] | |
for _ in range(self.num_res_blocks + 1): | |
block.append( | |
ResnetBlock( | |
in_channels=block_in, | |
out_channels=block_out, | |
dropout=dropout, | |
) | |
) | |
block_in = block_out | |
if curr_res in attn_resolutions: | |
attn.append(AttnBlock(block_in)) | |
up = nn.Module() | |
up.block = block | |
up.attn = attn | |
if i_level >= (self.num_resolutions - self.num_upsamples): | |
up.upsample = Upsample(block_in) | |
curr_res = curr_res * 2 | |
self.up.insert(0, up) | |
# end | |
self.norm_out = Normalize(block_in) | |
self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1) | |
def forward(self, z: torch.Tensor) -> torch.Tensor: | |
h = self.conv_in(z) | |
# middle | |
h = self.mid.block_1(h) | |
h = self.mid.attn_1(h) | |
h = self.mid.block_2(h) | |
# upsampling | |
for i_level in reversed(range(self.num_resolutions)): | |
for i_block in range(self.num_res_blocks + 1): | |
h = self.up[i_level].block[i_block](h) | |
if len(self.up[i_level].attn) > 0: | |
h = self.up[i_level].attn[i_block](h) | |
if i_level >= (self.num_resolutions - self.num_upsamples): | |
h = self.up[i_level].upsample(h) | |
h = self.norm_out(h) | |
h = nonlinearity(h) | |
h = self.conv_out(h) | |
h = self.unpatcher(h) | |
return h | |