roll-ai's picture
Upload 381 files
b6af722 verified
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The model definition for Continuous 2D layers
Adapted from: https://github.com/CompVis/stable-diffusion/blob/
21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/ldm/modules/diffusionmodules/model.py
[Copyright (c) 2022 Robin Rombach and Patrick Esser and contributors]
https://github.com/CompVis/stable-diffusion/blob/
21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/LICENSE
"""
import math
import numpy as np
# pytorch_diffusion + derived encoder decoder
import torch
import torch.nn as nn
import torch.nn.functional as F
from loguru import logger as logging
from cosmos_predict1.tokenizer.modules.patching import Patcher, UnPatcher
from cosmos_predict1.tokenizer.modules.utils import Normalize, nonlinearity
class Upsample(nn.Module):
def __init__(self, in_channels: int):
super().__init__()
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = x.repeat_interleave(2, dim=2).repeat_interleave(2, dim=3)
return self.conv(x)
class Downsample(nn.Module):
def __init__(self, in_channels: int):
super().__init__()
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
def forward(self, x: torch.Tensor) -> torch.Tensor:
pad = (0, 1, 0, 1)
x = F.pad(x, pad, mode="constant", value=0)
return self.conv(x)
class ResnetBlock(nn.Module):
def __init__(
self,
*,
in_channels: int,
out_channels: int = None,
dropout: float,
**kwargs,
):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.norm1 = Normalize(in_channels)
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.norm2 = Normalize(out_channels)
self.dropout = nn.Dropout(dropout)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.nin_shortcut = (
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
if in_channels != out_channels
else nn.Identity()
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
h = x
h = self.norm1(h)
h = nonlinearity(h)
h = self.conv1(h)
h = self.norm2(h)
h = nonlinearity(h)
h = self.dropout(h)
h = self.conv2(h)
x = self.nin_shortcut(x)
return x + h
class AttnBlock(nn.Module):
def __init__(self, in_channels: int):
super().__init__()
self.norm = Normalize(in_channels)
self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
def forward(self, x: torch.Tensor) -> torch.Tensor:
h_ = x
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
# compute attention
b, c, h, w = q.shape
q = q.reshape(b, c, h * w)
q = q.permute(0, 2, 1)
k = k.reshape(b, c, h * w)
w_ = torch.bmm(q, k)
w_ = w_ * (int(c) ** (-0.5))
w_ = F.softmax(w_, dim=2)
# attend to values
v = v.reshape(b, c, h * w)
w_ = w_.permute(0, 2, 1)
h_ = torch.bmm(v, w_)
h_ = h_.reshape(b, c, h, w)
h_ = self.proj_out(h_)
return x + h_
class Encoder(nn.Module):
def __init__(
self,
in_channels: int,
channels: int,
channels_mult: list[int],
num_res_blocks: int,
attn_resolutions: list[int],
dropout: float,
resolution: int,
z_channels: int,
spatial_compression: int,
**ignore_kwargs,
):
super().__init__()
self.num_resolutions = len(channels_mult)
self.num_res_blocks = num_res_blocks
# Patcher.
patch_size = ignore_kwargs.get("patch_size", 1)
self.patcher = Patcher(patch_size, ignore_kwargs.get("patch_method", "rearrange"))
in_channels = in_channels * patch_size * patch_size
# calculate the number of downsample operations
self.num_downsamples = int(math.log2(spatial_compression)) - int(math.log2(patch_size))
assert (
self.num_downsamples <= self.num_resolutions
), f"we can only downsample {self.num_resolutions} times at most"
# downsampling
self.conv_in = torch.nn.Conv2d(in_channels, channels, kernel_size=3, stride=1, padding=1)
curr_res = resolution // patch_size
in_ch_mult = (1,) + tuple(channels_mult)
self.in_ch_mult = in_ch_mult
self.down = nn.ModuleList()
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = channels * in_ch_mult[i_level]
block_out = channels * channels_mult[i_level]
for _ in range(self.num_res_blocks):
block.append(
ResnetBlock(
in_channels=block_in,
out_channels=block_out,
dropout=dropout,
)
)
block_in = block_out
if curr_res in attn_resolutions:
attn.append(AttnBlock(block_in))
down = nn.Module()
down.block = block
down.attn = attn
if i_level < self.num_downsamples:
down.downsample = Downsample(block_in)
curr_res = curr_res // 2
self.down.append(down)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, dropout=dropout)
self.mid.attn_1 = AttnBlock(block_in)
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, dropout=dropout)
# end
self.norm_out = Normalize(block_in)
self.conv_out = torch.nn.Conv2d(block_in, z_channels, kernel_size=3, stride=1, padding=1)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.patcher(x)
# downsampling
hs = [self.conv_in(x)]
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](hs[-1])
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h)
hs.append(h)
if i_level < self.num_downsamples:
hs.append(self.down[i_level].downsample(hs[-1]))
# middle
h = hs[-1]
h = self.mid.block_1(h)
h = self.mid.attn_1(h)
h = self.mid.block_2(h)
# end
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
return h
class Decoder(nn.Module):
def __init__(
self,
out_channels: int,
channels: int,
channels_mult: list[int],
num_res_blocks: int,
attn_resolutions: int,
dropout: float,
resolution: int,
z_channels: int,
spatial_compression: int,
**ignore_kwargs,
):
super().__init__()
self.num_resolutions = len(channels_mult)
self.num_res_blocks = num_res_blocks
# UnPatcher.
patch_size = ignore_kwargs.get("patch_size", 1)
self.unpatcher = UnPatcher(patch_size, ignore_kwargs.get("patch_method", "rearrange"))
out_ch = out_channels * patch_size * patch_size
# calculate the number of upsample operations
self.num_upsamples = int(math.log2(spatial_compression)) - int(math.log2(patch_size))
assert self.num_upsamples <= self.num_resolutions, f"we can only upsample {self.num_resolutions} times at most"
block_in = channels * channels_mult[self.num_resolutions - 1]
curr_res = (resolution // patch_size) // 2 ** (self.num_resolutions - 1)
self.z_shape = (1, z_channels, curr_res, curr_res)
logging.info("Working with z of shape {} = {} dimensions.".format(self.z_shape, np.prod(self.z_shape)))
# z to block_in
self.conv_in = torch.nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, dropout=dropout)
self.mid.attn_1 = AttnBlock(block_in)
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, dropout=dropout)
# upsampling
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = channels * channels_mult[i_level]
for _ in range(self.num_res_blocks + 1):
block.append(
ResnetBlock(
in_channels=block_in,
out_channels=block_out,
dropout=dropout,
)
)
block_in = block_out
if curr_res in attn_resolutions:
attn.append(AttnBlock(block_in))
up = nn.Module()
up.block = block
up.attn = attn
if i_level >= (self.num_resolutions - self.num_upsamples):
up.upsample = Upsample(block_in)
curr_res = curr_res * 2
self.up.insert(0, up)
# end
self.norm_out = Normalize(block_in)
self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
def forward(self, z: torch.Tensor) -> torch.Tensor:
h = self.conv_in(z)
# middle
h = self.mid.block_1(h)
h = self.mid.attn_1(h)
h = self.mid.block_2(h)
# upsampling
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks + 1):
h = self.up[i_level].block[i_block](h)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h)
if i_level >= (self.num_resolutions - self.num_upsamples):
h = self.up[i_level].upsample(h)
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
h = self.unpatcher(h)
return h