roll-ai's picture
Upload 381 files
b6af722 verified
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Quantizers for discrete image and video tokenization."""
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import reduce
from loguru import logger as logging
from cosmos_predict1.tokenizer.modules.utils import default, entropy, pack_one, rearrange, round_ste, unpack_one
_PERSISTENT = True
class ResidualFSQuantizer(nn.Module):
"""Residual Finite Scalar Quantization
Follows Algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf
"""
def __init__(self, levels: list[int], num_quantizers: int, **ignore_kwargs):
super().__init__()
self.dtype = ignore_kwargs.get("dtype", torch.float32)
self.layers = nn.ModuleList([FSQuantizer(levels=levels) for _ in range(num_quantizers)])
def forward(self, x: torch.Tensor) -> torch.Tensor:
indices_stack = []
residual = x
quantized_out = 0
loss_out = 0
for i, layer in enumerate(self.layers):
quant_indices, z, loss = layer(residual)
indices_stack.append(quant_indices)
residual = residual - z.detach()
quantized_out = quantized_out + z
loss_out = loss_out + loss
self.residual = residual
indices = torch.stack(indices_stack, dim=1)
return indices, quantized_out.to(self.dtype), loss_out.to(self.dtype)
def indices_to_codes(self, indices_stack: torch.Tensor) -> torch.Tensor:
quantized_out = 0
for layer, indices in zip(self.layers, indices_stack.transpose(0, 1)):
quantized_out += layer.indices_to_codes(indices)
return quantized_out
class FSQuantizer(nn.Module):
"""Finite Scalar Quantization: VQ-VAE Made Simple - https://arxiv.org/abs/2309.15505
Code adapted from Jax version in Appendix A.1.
Adapted from: https://github.com/lucidrains/vector-quantize-pytorch/blob/9502a1f447876d53fd37685b226bf28f250dc4a3/
vector_quantize_pytorch/finite_scalar_quantization.py
[Copyright (c) 2020 Phil Wang]
https://github.com/lucidrains/vector-quantize-pytorch/blob/9502a1f447876d53fd37685b226bf28f250dc4a3/LICENSE
"""
def __init__(
self,
levels: list[int],
dim: Optional[int] = None,
num_codebooks=1,
keep_num_codebooks_dim: Optional[bool] = None,
scale: Optional[float] = None,
**ignore_kwargs,
):
super().__init__()
self.dtype = ignore_kwargs.get("dtype", torch.bfloat16)
self.persistent = ignore_kwargs.get("persistent_quantizer", _PERSISTENT)
_levels = torch.tensor(levels, dtype=torch.int32)
self.register_buffer("_levels", _levels, persistent=self.persistent)
_basis = torch.cumprod(torch.tensor([1] + levels[:-1]), dim=0, dtype=torch.int32)
self.register_buffer("_basis", _basis, persistent=self.persistent)
self.scale = scale
codebook_dim = len(levels)
self.codebook_dim = codebook_dim
effective_codebook_dim = codebook_dim * num_codebooks
self.num_codebooks = num_codebooks
self.effective_codebook_dim = effective_codebook_dim
keep_num_codebooks_dim = default(keep_num_codebooks_dim, num_codebooks > 1)
assert not (num_codebooks > 1 and not keep_num_codebooks_dim)
self.keep_num_codebooks_dim = keep_num_codebooks_dim
self.dim = default(dim, len(_levels) * num_codebooks)
has_projections = self.dim != effective_codebook_dim
self.project_in = nn.Linear(self.dim, effective_codebook_dim) if has_projections else nn.Identity()
self.project_out = nn.Linear(effective_codebook_dim, self.dim) if has_projections else nn.Identity()
self.has_projections = has_projections
self.codebook_size = self._levels.prod().item()
implicit_codebook = self.indices_to_codes(torch.arange(self.codebook_size), project_out=False)
self.register_buffer("implicit_codebook", implicit_codebook, persistent=self.persistent)
def bound(self, z: torch.Tensor, eps: float = 1e-3) -> torch.Tensor:
"""Bound `z`, an array of shape (..., d)."""
half_l = (self._levels - 1) * (1 + eps) / 2
offset = torch.where(self._levels % 2 == 0, 0.5, 0.0)
shift = (offset / half_l).atanh()
return (z + shift).tanh() * half_l - offset
def quantize(self, z: torch.Tensor) -> torch.Tensor:
"""Quantizes z, returns quantized zhat, same shape as z."""
quantized = round_ste(self.bound(z))
half_width = self._levels // 2 # Renormalize to [-1, 1].
return quantized / half_width
def _scale_and_shift(self, zhat_normalized: torch.Tensor) -> torch.Tensor:
half_width = self._levels // 2
return (zhat_normalized * half_width) + half_width
def _scale_and_shift_inverse(self, zhat: torch.Tensor) -> torch.Tensor:
half_width = self._levels // 2
return (zhat - half_width) / half_width
def codes_to_indices(self, zhat: torch.Tensor) -> torch.Tensor:
"""Converts a `code` to an index in the codebook."""
assert zhat.shape[-1] == self.codebook_dim
zhat = self._scale_and_shift(zhat).float()
return (zhat * self._basis).sum(dim=-1).to(torch.int32)
def indices_to_codes(self, indices: torch.Tensor, project_out=True) -> torch.Tensor:
"""Inverse of `codes_to_indices`."""
is_img_or_video = indices.ndim >= (3 + int(self.keep_num_codebooks_dim))
indices = rearrange(indices, "... -> ... 1")
codes_non_centered = (indices // self._basis) % self._levels
codes = self._scale_and_shift_inverse(codes_non_centered)
if self.keep_num_codebooks_dim:
codes = rearrange(codes, "... c d -> ... (c d)")
if project_out:
codes = self.project_out(codes)
if is_img_or_video:
codes = rearrange(codes, "b ... d -> b d ...")
return codes.to(self.dtype)
def forward(self, z: torch.Tensor) -> torch.Tensor:
"""
einstein notation
b - batch
n - sequence (or flattened spatial dimensions)
d - feature dimension, which is also log2(codebook size)
c - number of codebook dim
"""
is_img_or_video = z.ndim >= 4
# standardize image or video into (batch, seq, dimension)
if is_img_or_video:
z = rearrange(z, "b d ... -> b ... d")
z, ps = pack_one(z, "b * d")
assert z.shape[-1] == self.dim, f"expected dimension of {self.dim} but found dimension of {z.shape[-1]}"
z = self.project_in(z)
z = rearrange(z, "b n (c d) -> b n c d", c=self.num_codebooks)
codes = self.quantize(z)
indices = self.codes_to_indices(codes)
codes = rearrange(codes, "b n c d -> b n (c d)")
out = self.project_out(codes)
# reconstitute image or video dimensions
if is_img_or_video:
out = unpack_one(out, ps, "b * d")
out = rearrange(out, "b ... d -> b d ...")
indices = unpack_one(indices, ps, "b * c")
dummy_loss = torch.zeros_like(out.mean(dim=[1, 2, 3], keepdim=True))
else:
dummy_loss = torch.zeros_like(out.mean(dim=[1, 2], keepdim=True)).unsqueeze(1)
if not self.keep_num_codebooks_dim:
indices = rearrange(indices, "... 1 -> ...")
return (indices, out.to(self.dtype), dummy_loss)
class VectorQuantizer(nn.Module):
"""Improved version over VectorQuantizer. Mostly
avoids costly matrix multiplications and allows for post-hoc remapping of indices.
Adapted from: https://github.com/CompVis/taming-transformers/blob/3ba01b241669f5ade541ce990f7650a3b8f65318/
taming/modules/vqvae/quantize.py
[Copyright (c) 2020 Patrick Esser and Robin Rombach and Björn Ommer]
https://github.com/CompVis/taming-transformers/blob/3ba01b241669f5ade541ce990f7650a3b8f65318/License.txt
"""
def __init__(
self,
num_embeddings: int,
embedding_dim: int,
beta: float = 0.25,
remap: str = None,
unknown_index: str = "random",
sane_index_shape: bool = False,
legacy: bool = True,
use_norm=False,
**ignore_kwargs,
):
super().__init__()
self.n_e = num_embeddings
self.e_dim = embedding_dim
self.beta = beta
self.legacy = legacy
self.norm = lambda x: F.normalize(x, dim=-1) if use_norm else x
self.embedding = nn.Embedding(self.n_e, self.e_dim)
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
self.remap = remap
if self.remap is not None:
self.register_buffer("used", torch.tensor(np.load(self.remap)))
self.re_embed = self.used.shape[0]
self.unknown_index = unknown_index
if self.unknown_index == "extra":
self.unknown_index = self.re_embed
self.re_embed = self.re_embed + 1
print(
f"Remapping {self.n_e} indices to {self.re_embed} indices. "
f"Using {self.unknown_index} for unknown indices."
)
else:
self.re_embed = num_embeddings
self.sane_index_shape = sane_index_shape
self.dtype = ignore_kwargs.get("dtype", torch.float32)
def remap_to_used(self, inds):
ishape = inds.shape
assert len(ishape) > 1
inds = inds.reshape(ishape[0], -1)
used = self.used.to(inds)
match = (inds[:, :, None] == used[None, None, ...]).long()
new = match.argmax(-1)
unknown = match.sum(2) < 1
if self.unknown_index == "random":
new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device)
else:
new[unknown] = self.unknown_index
return new.reshape(ishape)
def unmap_to_all(self, inds):
ishape = inds.shape
assert len(ishape) > 1
inds = inds.reshape(ishape[0], -1)
used = self.used.to(inds)
if self.re_embed > self.used.shape[0]: # extra token
inds[inds >= self.used.shape[0]] = 0 # simply set to zero
back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
return back.reshape(ishape)
def forward(self, z, temp=None, rescale_logits=False, return_logits=False):
assert temp is None or temp == 1.0, "Only for interface compatible with Gumbel"
assert rescale_logits is False, "Only for interface compatible with Gumbel"
assert return_logits is False, "Only for interface compatible with Gumbel"
z = rearrange(z, "b c h w -> b h w c").contiguous()
z_flattened = z.view(-1, self.e_dim)
d = (
torch.sum(z_flattened**2, dim=1, keepdim=True)
+ torch.sum(self.embedding.weight**2, dim=1)
- 2
* torch.einsum(
"bd,dn->bn",
z_flattened,
rearrange(self.embedding.weight, "n d -> d n"),
)
)
encoding_indices = torch.argmin(d, dim=1).unsqueeze(1)
encodings = torch.zeros(encoding_indices.shape[0], self.n_e, device=z.device)
encodings.scatter_(1, encoding_indices, 1)
z_q = torch.matmul(encodings, self.embedding.weight).view(z.shape)
min_encodings = None
z_q, z = self.norm(z_q), self.norm(z)
# compute loss for embedding
commit_loss = torch.mean((z_q - z.detach()) ** 2, dim=[1, 2, 3], keepdim=True)
emb_loss = torch.mean((z_q.detach() - z) ** 2, dim=[1, 2, 3], keepdim=True)
if not self.legacy:
loss = self.beta * emb_loss + commit_loss
else:
loss = emb_loss + self.beta * commit_loss
# preserve gradients
z_q = z + (z_q - z).detach()
avg_probs = torch.mean(encodings, dim=0)
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))
# reshape back to match original input shape
z_q = rearrange(z_q, "b h w c -> b c h w").contiguous()
if self.remap is not None:
min_encoding_indices = encoding_indices.squeeze(1).reshape(z.shape[0], -1) # add batch axis
min_encoding_indices = self.remap_to_used(encoding_indices.squeeze(1))
min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten
if self.sane_index_shape:
min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3])
return (
z_q,
loss,
(
encoding_indices.squeeze(1),
min_encodings,
commit_loss.mean().detach(),
self.beta * emb_loss.mean().detach(),
perplexity.mean().detach(),
),
)
def get_codebook_entry(self, indices, shape):
# shape specifying (batch, height, width, channel)
if self.remap is not None:
indices = indices.reshape(shape[0], -1) # add batch axis
indices = self.unmap_to_all(indices)
indices = indices.reshape(-1) # flatten again
# get quantized latent vectors
z_q = self.embedding(indices)
if shape is not None:
z_q = z_q.view(shape)
# reshape back to match original input shape
z_q = z_q.permute(0, 3, 1, 2).contiguous()
return z_q
class LFQuantizer(nn.Module):
"""Lookup-Free Quantization
Adapted from: https://github.com/lucidrains/vector-quantize-pytorch/blob/9502a1f447876d53fd37685b226bf28f250dc4a3/
vector_quantize_pytorch/lookup_free_quantization.py
[Copyright (c) 2020 Phil Wang]
https://github.com/lucidrains/vector-quantize-pytorch/blob/9502a1f447876d53fd37685b226bf28f250dc4a3/LICENSE
"""
def __init__(
self,
*,
codebook_size: int,
codebook_dim: int,
embed_dim: Optional[int] = None, # if None, use codebook_dim
entropy_loss_weight=0.1,
commitment_loss_weight=0.25,
default_temp: float = 0.01,
entropy_loss: bool = False,
**ignore_kwargs,
):
"""Lookup-Free Quantization
Args:
codebook_size (int): The number of entries in the codebook.
codebook_dim (int): The number of bits in each code.
embed_dim (Optional[int], optional): The dimension of the input embedding. Defaults to None.
entropy_loss_weight (float, optional): Whether to use entropy loss. Defaults to 0.1.
commitment_loss_weight (float, optional): Weight for commitment loss. Defaults to 0.25.
default_temp (float, optional): The temprature to use. Defaults to 0.01.
entropy_loss (bool, optional): Flag for entropy loss. Defaults to False.
"""
super().__init__()
self.entropy_loss = entropy_loss
self.codebook_dim = codebook_dim
self.default_temp = default_temp
self.entrop_loss_weight = entropy_loss_weight
self.commitment_loss_weight = commitment_loss_weight
embed_dim = embed_dim or codebook_dim
has_projections = embed_dim != codebook_dim
self.project_in = nn.Linear(embed_dim, codebook_dim) if has_projections else nn.Identity()
self.project_out = nn.Linear(codebook_dim, embed_dim) if has_projections else nn.Identity()
logging.info(f"LFQ: has_projections={has_projections}, dim_in={embed_dim}, codebook_dim={codebook_dim}")
self.dtype = ignore_kwargs.get("dtype", torch.float32)
if entropy_loss:
assert 2**codebook_dim == codebook_size, "codebook size must be 2 ** codebook_dim"
self.codebook_size = codebook_size
self.register_buffer(
"mask",
2 ** torch.arange(codebook_dim - 1, -1, -1),
persistent=_PERSISTENT,
)
self.register_buffer("zero", torch.tensor(0.0), persistent=_PERSISTENT)
all_codes = torch.arange(codebook_size)
bits = ((all_codes[..., None].int() & self.mask) != 0).float()
codebook = 2 * bits - 1.0
self.register_buffer("codebook", codebook, persistent=_PERSISTENT) # [codebook_size, codebook_dim]
def forward(self, z: torch.Tensor, temp: float = None) -> torch.Tensor:
temp = temp or self.default_temp
z = rearrange(z, "b d ... -> b ... d")
z, ps = pack_one(z, "b * d")
z = self.project_in(z)
# split out number of codebooks
z = rearrange(z, "b n (c d) -> b n c d", c=self.num_codebooks)
# quantization
original_input = z
codebook_value = torch.ones_like(z)
z_q = torch.where(z > 0, codebook_value, -codebook_value)
# preserve gradients
z_q = z + (z_q - z).detach()
# commit loss
commit_loss = ((original_input - z_q.detach()) ** 2).mean(dim=[1, 2, 3])
z_q = rearrange(z_q, "b n c d -> b n (c d)")
z_q = self.project_out(z_q)
# reshape
z_q = unpack_one(z_q, ps, "b * d")
z_q = rearrange(z_q, "b ... d -> b d ...")
loss = self.commitment_loss_weight * commit_loss
# entropy loss (eq-5)
if self.entropy_loss:
# indices
indices = reduce((z > 0).int() * self.mask.int(), "b n c d -> b n c", "sum")
indices = unpack_one(indices, ps, "b * c")
indices = rearrange(indices, "... 1 -> ...")
distance = -2 * torch.einsum(
"... i d, j d -> ... i j",
original_input,
self.codebook.to(original_input.dtype),
)
prob = (-distance / temp).softmax(dim=-1)
per_sample_entropy = entropy(prob).mean(dim=[1, 2])
avg_prob = reduce(prob, "... c d -> c d", "mean")
codebook_entropy = entropy(avg_prob).mean()
entropy_aux_loss = per_sample_entropy - codebook_entropy
loss += self.entrop_loss_weight * entropy_aux_loss
return (
z_q,
loss.unsqueeze(1).unsqueeze(1).unsqueeze(1),
(
indices,
self.commitment_loss_weight * commit_loss.mean().detach(),
self.entrop_loss_weight * entropy_aux_loss.mean().detach(),
self.entrop_loss_weight * per_sample_entropy.mean().detach(),
self.entrop_loss_weight * codebook_entropy.mean().detach(),
),
)
else:
return (
z_q,
loss.unsqueeze(1).unsqueeze(1).unsqueeze(1),
self.commitment_loss_weight * commit_loss.mean().detach(),
)
class InvQuantizerJit(nn.Module):
"""Use for decoder_jit to trace quantizer in discrete tokenizer"""
def __init__(self, quantizer):
super().__init__()
self.quantizer = quantizer
def forward(self, indices: torch.Tensor):
codes = self.quantizer.indices_to_codes(indices)
return codes.to(self.quantizer.dtype)