Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import annotations | |
import os | |
import threading | |
import torch | |
from torch._dynamo.eval_frame import OptimizedModule as torch_OptimizedModule | |
from cosmos_predict1.utils import callback, distributed, ema, log, misc | |
from cosmos_predict1.utils.checkpointer import Checkpointer | |
from cosmos_predict1.utils.config import CheckpointConfig, JobConfig | |
from cosmos_predict1.utils.model import Model | |
class TokenizerCheckpointer(Checkpointer): | |
"""The tokenizer checkpointer, extends the shared checkpointer. | |
Supports checkpoint saving/loading to local disk: | |
- network weights and training optimizer states. | |
- optionally, export a TorchScript version of the EMA model. | |
""" | |
def __init__(self, config_checkpoint: CheckpointConfig, config_job: JobConfig, callbacks: callback.CallBackGroup): | |
super().__init__(config_checkpoint, config_job, callbacks) | |
self.callbacks = callbacks | |
self.config_jit = config_checkpoint.jit | |
def save( | |
self, | |
model: Model, | |
optimizer: torch.optim.Optimizer, | |
scheduler: torch.optim.lr_scheduler.LRScheduler, | |
grad_scaler: torch.amp.GradScaler, | |
iteration: int = -1, | |
**ignore_kwargs, | |
) -> None: | |
"""Saves network weights, optimizer parameters, scheduler parameters to a checkpoint. | |
Args: | |
model (Model): The PyTorch model. | |
optimizer: The model optimizer. | |
scheduler: The optimization scheduler. | |
grad_scaler: The gradient scaler (for mixed precision training). | |
iteration: Current iteration number. | |
""" | |
self.callbacks.on_save_checkpoint_start(model, iteration) | |
model.eval() | |
checkpoint_file = f"iter_{iteration:09}.pt" | |
if distributed.get_rank() == 0: | |
state_dict = dict( | |
model=model.state_dict(), | |
optimizer=optimizer.state_dict(), | |
scheduler=scheduler.state_dict(), | |
grad_scaler=grad_scaler.state_dict(), | |
iteration=iteration, | |
) | |
state_dict = misc.to(state_dict, device="cpu") | |
self.callbacks.on_save_checkpoint(model, state_dict=state_dict) | |
# Wait for previous saver thread to end. | |
if self.save_thread: | |
self.save_thread.join() | |
# Run the checkpoint saver in a separate thread. | |
self.save_thread = threading.Thread( | |
target=self._save_worker_local, | |
daemon=False, | |
args=(state_dict, self._get_ema_jit(model), checkpoint_file, distributed.get_rank()), | |
) | |
self.save_thread.start() | |
# Note: Checkpoints are saved on a separate thread and this callback is not accurate. | |
# Please check logs from on_save_checkpoint_success() for better accuracy | |
self.callbacks.on_save_checkpoint_end(model=None, iteration=iteration) | |
def _save_worker_local( | |
self, | |
state_dict: dict[str, torch.Tensor], | |
jit_models: dict[str, torch.ScriptModule], | |
checkpoint_file: str, | |
rank: int = 0, | |
) -> None: | |
"""Worker to save checkpoint to local disk, spawned with a child thread (runs in parallel with the training). | |
Args: | |
state_dict: The state dict of the model/optimizer/scheduler. | |
ema_jit: A dict of TorchScript EMA model, representing the encoder, decoder and full model. | |
checkpoint_file (str): The file name of the model checkpoint. | |
rank (int): GPU device (default: 0). | |
""" | |
checkpoint_path = os.path.join(self.checkpoint_dir_local, checkpoint_file) | |
os.makedirs(self.checkpoint_dir_local, exist_ok=True) | |
try: | |
torch.save(state_dict, checkpoint_path) | |
for key, jit_model in jit_models.items(): | |
checkpoint_jit = checkpoint_path.replace(".pt", f"_{key}.jit") | |
torch.jit.save(jit_model, checkpoint_jit) | |
log.success(f"Saved checkpoint: {checkpoint_jit}") | |
if rank == 0: | |
self._write_latest_checkpoint_file(checkpoint_file) | |
log.success(f"Saved checkpoint (local): {checkpoint_path}") | |
iteration = int(checkpoint_file.replace("iter_", "").replace(".pt", "")) | |
self.callbacks.on_save_checkpoint_success(iteration=iteration) | |
except Exception as e: # noqa: BLE001 | |
log.exception(f"Checkpoint failed to save (local): {e}") | |
def _get_ema_jit(self, model: Model) -> dict[str, torch.ScriptModule]: | |
"""Returns a TorchScript version of ema models compiled by PyTorch JIT.""" | |
if not self.config_jit.enabled: | |
return dict() | |
input_shape = tuple(self.config_jit.input_shape) | |
example_input = torch.randn(input_shape) | |
dtype = getattr(torch, self.config_jit.dtype) | |
example_input = example_input.to(self.config_jit.device).to(dtype) | |
with ema.ema_scope(model, enabled=model.config.ema.enabled): | |
_model = model.network | |
if isinstance(_model, torch_OptimizedModule): | |
_model = _model._orig_mod | |
# Make sure jit model output consistenly during consecutive calls | |
# Check here: https://github.com/pytorch/pytorch/issues/74534 | |
torch._C._jit_set_texpr_fuser_enabled(False) | |
ema_jit = torch.jit.trace(_model, example_input, strict=self.config_jit.strict) | |
encoder_jit = torch.jit.trace(_model.encoder_jit(), example_input, strict=self.config_jit.strict) | |
decoder_example = encoder_jit(example_input) | |
if isinstance(decoder_example, tuple): | |
decoder_example = decoder_example[0] | |
else: | |
assert isinstance(decoder_example, torch.Tensor), "decoder_example should be a tensor or tuple" | |
decoder_jit = torch.jit.trace(_model.decoder_jit(), decoder_example, strict=self.config_jit.strict) | |
return {"ema": ema_jit, "enc": encoder_jit, "dec": decoder_jit} | |