roll-ai's picture
Upload 381 files
b6af722 verified
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import os
import threading
import torch
from torch._dynamo.eval_frame import OptimizedModule as torch_OptimizedModule
from cosmos_predict1.utils import callback, distributed, ema, log, misc
from cosmos_predict1.utils.checkpointer import Checkpointer
from cosmos_predict1.utils.config import CheckpointConfig, JobConfig
from cosmos_predict1.utils.model import Model
class TokenizerCheckpointer(Checkpointer):
"""The tokenizer checkpointer, extends the shared checkpointer.
Supports checkpoint saving/loading to local disk:
- network weights and training optimizer states.
- optionally, export a TorchScript version of the EMA model.
"""
def __init__(self, config_checkpoint: CheckpointConfig, config_job: JobConfig, callbacks: callback.CallBackGroup):
super().__init__(config_checkpoint, config_job, callbacks)
self.callbacks = callbacks
self.config_jit = config_checkpoint.jit
def save(
self,
model: Model,
optimizer: torch.optim.Optimizer,
scheduler: torch.optim.lr_scheduler.LRScheduler,
grad_scaler: torch.amp.GradScaler,
iteration: int = -1,
**ignore_kwargs,
) -> None:
"""Saves network weights, optimizer parameters, scheduler parameters to a checkpoint.
Args:
model (Model): The PyTorch model.
optimizer: The model optimizer.
scheduler: The optimization scheduler.
grad_scaler: The gradient scaler (for mixed precision training).
iteration: Current iteration number.
"""
self.callbacks.on_save_checkpoint_start(model, iteration)
model.eval()
checkpoint_file = f"iter_{iteration:09}.pt"
if distributed.get_rank() == 0:
state_dict = dict(
model=model.state_dict(),
optimizer=optimizer.state_dict(),
scheduler=scheduler.state_dict(),
grad_scaler=grad_scaler.state_dict(),
iteration=iteration,
)
state_dict = misc.to(state_dict, device="cpu")
self.callbacks.on_save_checkpoint(model, state_dict=state_dict)
# Wait for previous saver thread to end.
if self.save_thread:
self.save_thread.join()
# Run the checkpoint saver in a separate thread.
self.save_thread = threading.Thread(
target=self._save_worker_local,
daemon=False,
args=(state_dict, self._get_ema_jit(model), checkpoint_file, distributed.get_rank()),
)
self.save_thread.start()
# Note: Checkpoints are saved on a separate thread and this callback is not accurate.
# Please check logs from on_save_checkpoint_success() for better accuracy
self.callbacks.on_save_checkpoint_end(model=None, iteration=iteration)
@misc.timer("checkpoint saving (local)")
def _save_worker_local(
self,
state_dict: dict[str, torch.Tensor],
jit_models: dict[str, torch.ScriptModule],
checkpoint_file: str,
rank: int = 0,
) -> None:
"""Worker to save checkpoint to local disk, spawned with a child thread (runs in parallel with the training).
Args:
state_dict: The state dict of the model/optimizer/scheduler.
ema_jit: A dict of TorchScript EMA model, representing the encoder, decoder and full model.
checkpoint_file (str): The file name of the model checkpoint.
rank (int): GPU device (default: 0).
"""
checkpoint_path = os.path.join(self.checkpoint_dir_local, checkpoint_file)
os.makedirs(self.checkpoint_dir_local, exist_ok=True)
try:
torch.save(state_dict, checkpoint_path)
for key, jit_model in jit_models.items():
checkpoint_jit = checkpoint_path.replace(".pt", f"_{key}.jit")
torch.jit.save(jit_model, checkpoint_jit)
log.success(f"Saved checkpoint: {checkpoint_jit}")
if rank == 0:
self._write_latest_checkpoint_file(checkpoint_file)
log.success(f"Saved checkpoint (local): {checkpoint_path}")
iteration = int(checkpoint_file.replace("iter_", "").replace(".pt", ""))
self.callbacks.on_save_checkpoint_success(iteration=iteration)
except Exception as e: # noqa: BLE001
log.exception(f"Checkpoint failed to save (local): {e}")
def _get_ema_jit(self, model: Model) -> dict[str, torch.ScriptModule]:
"""Returns a TorchScript version of ema models compiled by PyTorch JIT."""
if not self.config_jit.enabled:
return dict()
input_shape = tuple(self.config_jit.input_shape)
example_input = torch.randn(input_shape)
dtype = getattr(torch, self.config_jit.dtype)
example_input = example_input.to(self.config_jit.device).to(dtype)
with ema.ema_scope(model, enabled=model.config.ema.enabled):
_model = model.network
if isinstance(_model, torch_OptimizedModule):
_model = _model._orig_mod
# Make sure jit model output consistenly during consecutive calls
# Check here: https://github.com/pytorch/pytorch/issues/74534
torch._C._jit_set_texpr_fuser_enabled(False)
ema_jit = torch.jit.trace(_model, example_input, strict=self.config_jit.strict)
encoder_jit = torch.jit.trace(_model.encoder_jit(), example_input, strict=self.config_jit.strict)
decoder_example = encoder_jit(example_input)
if isinstance(decoder_example, tuple):
decoder_example = decoder_example[0]
else:
assert isinstance(decoder_example, torch.Tensor), "decoder_example should be a tensor or tuple"
decoder_jit = torch.jit.trace(_model.decoder_jit(), decoder_example, strict=self.config_jit.strict)
return {"ema": ema_jit, "enc": encoder_jit, "dec": decoder_jit}